221 research outputs found

    Generalization of Benalcazar-Bernevig-Hughes model to arbitrary dimensions

    Full text link
    The Benalcazar-Bernevig-Hughes (BBH) model [Science 357, 61 (2017)], featuring bulk quadrupole moment, edge dipole moments, and corner states, is a paradigm of both higher-order topological insulators and topological multipole insulators. In this work, we generalize the BBH model to arbitrary dimensions by utilizing the Clifford algebra. For the generalized BBH model, the analytical solution of corner states can be directly constructed in a unified way. Based on the solution of corner states and chiral symmetry analysis, we develop a general boundary projection method to extract the boundary Hamiltonians, which turns out to be the BBH models of lower dimension and reveals the dimensional hierarchy

    Interaction-driven topological phase diagram of twisted bilayer MoTe2_2

    Full text link
    Twisted bilayer MoTe2_2 is a promising platform to investigate the interplay between topology and many-body interaction. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with an additional orbital and realistic Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ\theta. At the hole filling factor ν=1\nu=1 (one hole per moir\'e unit cell), the ground state can be in the multiferroic phase with coexisting spontaneous layer polarization and magnetism, the quantum anomalous Hall phase, and finally the topologically trivial magnetic phases, as θ\theta increases from 1.5∘1.5^{\circ} to 5∘5^{\circ}. At ν=2\nu=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ\theta passes through a critical value. The dependence of the phase boundaries on model parameters such as the gate-to-sample distance, the dielectric constant, and the moir\'e potential amplitude is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers.Comment: 12 pages, 7 figures. Comments and Collaborations are Welcome

    Braiding higher-order Majorana corner states through their spin degree of freedom

    Full text link
    In this work, we study the spin texture of a class of higher-order topological superconductors (HOTSC) and show how it can be used to detect and braid Majorana corner modes (MCMs). This class of HOTSC is composed of two-dimensional topological insulators with s-wave superconductivity and in-plane magnetic fields, which offers advantages in experimental implementation. The spin polarization of the MCMs in this class is perpendicular with the applied magnetic field direction and is opposite on intrinsic orbitals, resulting in an overall ferrimagnetic spin texture. As a result, we find that the spin-selective Andreev reflection can be observed in a transverse instead of parallel direction to the applied magnetic field. Meanwhile, this spin texture leads to the gate-tunable 4Ï€4\pi periodic Ï•0\phi_0 Josephson current that performs qualitatively different behavior from the topologically trivial Ï•0\phi_0-junction under rotating the in-plane magnetic field. Meanwhile, the existence of the MCMs in this class does not depend on the in-plane magnetic field direction. This gives rise to great advantage in constructing all electronically controlled Majorana network for braiding, which is confirmed through our numerical simulation. We thus provide a comprehensive scheme for probing non-Abelian statistics in this class of HOTSCs.Comment: 6 pages, 4 figure

    The statistical properties of galaxy morphological types in compact groups of Main galaxies from the SDSS Data Release 4

    Get PDF
    In order to explore the statistical properties of galaxy morphological types in compact groups (CGs), we construct a random group sample which has the same distributions of redshift and number of member galaxies as those of the CG sample. It turns out that the proportion of early-type galaxies in different redshift bins for the CG sample is statistically higher than that for random group sample, and with growing redshift z this kind of difference becomes more significant. This may be due to the existence of interactions and mergers within a significant fraction of SDSS CGs. We also compare statistical results of CGs with those of more compact groups and pairs, but do not observe as large statistical difference as Hickson (1982)'results.Comment: 12 pages, 9 figure

    Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-Regulated Cell Cycle Withdrawal

    Get PDF
    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration

    Controllable Majorana vortex states in iron-based superconducting nanowires

    Full text link
    There has been experimental evidence for the Majorana zero modes (MZMs) in solid state systems, which are building blocks for potential topological quantum computing. It is important to design devices, in which MZMs are easy to manipulate and possess a broad topological non-trivial parameter space for fusion and braiding. Here, we propose that the Majorana vortex states in iron-based superconducting nanowires fulfill these desirable conditions. This system has a radius-induced topological phase transition, giving a lower limit to the radius of the nanowire. In the topological phase, there is only one pair of MZMs in the nanowire over a wide range of radius, chemical potential, and external magnetic field. The wavefunction of the MZM has a sizable distribution at the side edge of the nanowire. This property enables one to control the interaction of the MZMs in neighboring vortex nanowires, and paves the way for Majorana fusion and braiding.Comment: 13 pages and 7 figure

    Deterministic topological quantum gates for Majorana qubits without ancillary modes

    Full text link
    The realization of quantum gates in topological quantum computation still confronts significant challenges in both fundamental and practical aspects. Here, we propose a deterministic and fully topologically protected measurement-based scheme to realize the issue of implementing Clifford quantum gates on the Majorana qubits. Our scheme is based on rigorous proof that the single-qubit gate can be performed by leveraging the neighboring Majorana qubit but not disturbing its carried quantum information, eliminating the need for ancillary Majorana zero modes (MZMs) in topological quantum computing. Benefiting from the ancilla-free construction, we show the minimum measurement sequences with four steps to achieve two-qubit Clifford gates by constructing their geometric visualization. To avoid the uncertainty of the measurement-only strategy, we propose manipulating the MZMs in their parameter space to correct the undesired measurement outcomes while maintaining complete topological protection, as demonstrated in a concrete Majorana platform. Our scheme identifies the minimal operations of measurement-based topological and deterministic Clifford gates and offers an ancilla-free design of topological quantum computation.Comment: 5 pages, 3 figures and appendi
    • …
    corecore