101 research outputs found

    Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids.

    Get PDF
    We identified the most popular electronic cigarette (EC) refill fluids using an Internet survey and local and online sales information, quantified their flavor chemicals, and evaluated cytotoxicities of the fluids and flavor chemicals. "Berries/Fruits/Citrus" was the most popular EC refill fluid flavor category. Twenty popular EC refill fluids were purchased from local shops, and the ingredient flavor chemicals were identified and quantified by gas chromatography-mass spectrometry. Total flavor chemical concentrations ranged from 0.6 to 27.9 mg/ml, and in 95% of the fluids, total flavor concentration was greater than nicotine concentration. The 20 most popular refill fluids contained 99 quantifiable flavor chemicals; each refill fluid contained 22 to 47 flavor chemicals, most being esters. Some chemicals were found frequently, and several were present in most products. At a 1% concentration, 80% of the refill fluids were cytotoxic in the MTT assay. Six pure standards of the flavor chemicals found at the highest concentrations in the two most cytotoxic refill fluids were effective in the MTT assay, and ethyl maltol, which was in over 50% of the products, was the most cytotoxic. These data show that the cytotoxicity of some popular refill fluids can be attributed to their high concentrations of flavor chemicals

    High concentrations of flavor chemicals are present in electronic cigarette refill fluids.

    Get PDF
    We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health

    Transportation System Impacts on Bicyclists\u27 Air Pollution Risks: Considerations for System Design and Use

    Get PDF
    Health risks associated with air pollution uptake while bicycling are often cited as a potential drawback to increased bicycling in cities. This seminar will provide an overview of how roadway and travel characteristics impact bicyclists\u27 uptake of traffic-related air pollution. Specific considerations for planners and designers of urban transportation systems to mitigate risks for travelers will be discussed. In addition, the extent to which bicyclists themselves can unilaterally reduce their pollution uptake will be described. This seminar synthesizes findings from a recently completed doctoral dissertation at Portland State University and from the broader literature.https://pdxscholar.library.pdx.edu/trec_seminar/1017/thumbnail.jp

    Measurement of Enantiomer Percentages for Five Monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–Thermal Desorption (ps-ATD)

    Get PDF
    Many monoterpenes have at least two different stereochemical forms, and many biosynthetic pathways are known to favor one product over the other(s). A rapid method was developed and used in the determination of the (-/+ role= presentation style= box-sizing: border-box; border-radius: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e)-enantiomeric distributions for α-pinene, β-pinene, camphene, limonene, and β-phellandrene as emitted by plant material from six conifer species. The six species included the two pine species Pseudotsuga menziesii and Pinus ponderosa, as well as the four cypress species Chamaecyparis lawsoniana, Thuja plilcata, Juniperus chinensis, and Thuja occidentalis. The method involved passive sampling adsorption–thermal desorption (ps-ATD). During sampling, the cartridge tube was placed in a 60 mL glass vial with plant material for 1 h. Sample analytes were thermally transferred to a chiral gas chromatography (GC) column. Detection was by mass spectrometry (MS). The six species exhibited different emission patterns for the five monoterpenes in the -/+ role= presentation style= box-sizing: border-box; border-radius: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e totals, although within a given species the distributions among the five monoterpenes were similar across multiple plants. β-pinene dominated in P. menziesii and P. ponderosa, and α-pinene dominated in T. plicata and T. occidentalis. The chiral separations revealed differences in the -/+ role= presentation style= box-sizing: border-box; border-radius: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e enantiomeric distributions among the species. The (−)-enantiomers of α-pinene and β-pinene dominated strongly in P. menziesii and P. ponderosa; the (−)-enantiomer of β-phellandrene dominated in C. lawsoniana. The dependence of the method precision on percent enantiomer abundance is discussed

    CFA-treated Mice Induce Hyperalgesia in Healthy mice via an olfactory mechanism

    Get PDF
    Background Social interactions with subjects experiencing pain can increase nociceptive sensitivity in observers, even without direct physical contact. In previous experiments, extended indirect exposure to soiled bedding from mice with alcohol withdrawal-related hyperalgesia enhanced nociception in their conspecifics. This finding suggested that olfactory cues could be sufficient for nociceptive hypersensitivity in otherwise untreated animals (also known as “bystanders”). Aim The current study addressed this possibility using an inflammation-based hyperalgesia model and long- and short-term exposure paradigms in C57BL/6J mice. Materials & Method Adult male and female mice received intraplantar injection of complete Freund\u27s adjuvant (CFA) and were used as stimulus animals to otherwise naïve same-sex bystander mice (BS). Another group of untreated mice (OLF) was simultaneously exposed to the bedding of the stimulus mice. Results In the long-term, 15-day exposure paradigm, the presence of CFA mice or their bedding resulted in reduced von Frey threshold but not Hargreaves paw withdrawal latency in BS or OLF mice. In the short-term paradigm, 1-hr interaction with CFA conspecifics or 1-hr exposure to their bedding induced mechanical hypersensitivity in BS and OLF mice lasting for 3 hrs. Chemical ablation of the main olfactory epithelium prevented bedding-induced and stimulus mice-induced mechanical hypersensitivity. Gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds in the bedding of experimental mice revealed that CFA-treated mice released an increased number of compounds indicative of disease states

    Candy Flavorings in Tobacco

    Get PDF
    Professor James F. Pankow reveals striking similarities between the patterns in the flavoring chemicals used in flavored tobacco products and those in popular candy and Kool-Aid products. The authors analyzed 12 artificially flavored candy and fruit drink products and compared them to 15 widely-available flavored tobacco products. They found significant overlap in the chemical signatures of the flavor chemicals. Several of the tobacco products contained flavor chemicals at much higher concentrations than in the non-tobacco products

    Chemical Elements, Flavor Chemicals, and Nicotine in Unused and Used Electronic Cigarettes Aged 5–10 Years and Effects of pH

    Get PDF
    The concentrations of elements/metals, nicotine, flavor chemicals and acids were compared in the e-liquids of unused and used first-generation electronic cigarettes (ECs) that were stored for 5–10 years. Metal analysis was performed using inductively coupled plasma optical emission spectroscopy; nicotine and flavor chemical analyses were performed using gas chromatography/mass spectroscopy. Of the 22 elements analyzed, 10 (aluminum, chromium, copper, iron, lead, nickel, selenium, silicon, tin, zinc) were often found in the e-liquids. Five elements had the highest average concentrations: copper (1161.6 mg/L), zinc (295.8 mg/L), tin (287.6 mg/L), nickel (71.1 mg/L), and lead (50.3 mg/L). Nicotine concentrations were always lower than label concentrations indicated. Of the 181 flavor chemicals analyzed, 11 were detected in at least one sample, with hydroxyacetone being present in all samples. In used products, some flavor chemicals appeared to be by-products of heating. E-liquids with the highest concentrations of acids and the lowest pH levels also had the highest concentrations of elements/metals. Metal concentrations in e-liquids increased after use in some products, and some metal concentrations, such as nickel, were high enough to be a health concern. Leachates from discarded ECs could contribute toxic metals/chemicals to the environment, supporting the need for better regulation of atomizer design, composition, and disposal

    Eugenol, Menthol and other Flavour Chemicals in Kreteks and ‘white’ cigarettes purchased in Indonesia

    Get PDF
    Background Flavoured tobacco products are not restricted in Indonesia, a country with about 68 million adults who smoke. Most use clove-mixed tobacco cigarettes (‘kreteks’); non-clove (‘white’) cigarettes are also available. Although the use of flavour chemicals has been identified by WHO as promoting tobacco use, little has been reported for Indonesia about the levels of flavourants in either kreteks or ‘white cigarettes’. Methods 22 kretek brand variants and nine ‘white’ cigarette brand variants were purchased in Indonesia during 2021/2022; one of the kretek packs contained three colour-coded variants, giving a total sample number of 24 for the kreteks. Chemical analyses gave the mg/stick (=mg/(filter+rod)) values for 180 individual flavour chemicals that included eugenol (a clove-flavoured compound), four other clove-related compounds and menthol. Results Eugenol was present at significant levels in all 24 kreteks (2.8–33.8 mg/stick), but was essentially absent in all of the cigarettes. Menthol was present in 14 of 24 kreteks, with levels ranging from 2.8 to 12.9 mg/stick, and in five of the nine cigarettes, with levels ranging from 3.6 to 10.8 mg/stick. Other flavour chemicals were also found in many of the kretek and cigarette samples. Conclusions In this small sample, we found numerous variations of flavoured tobacco products offered by multinational and national companies in Indonesia. Given the body of evidence that flavours make tobacco products more appealing, regulation of clove-related compounds, menthol and other flavour chemicals should be considered in Indonesia
    corecore