7,059 research outputs found

    Detecting Slow Wave Sleep Using a Single EEG Signal Channel

    Get PDF
    Background: In addition to the cost and complexity of processing multiple signal channels, manual sleep staging is also tedious, time consuming, and error-prone. The aim of this paper is to propose an automatic slow wave sleep (SWS) detection method that uses only one channel of the electroencephalography (EEG) signal. New Method: The proposed approach distinguishes itself from previous automatic sleep staging methods by using three specially designed feature groups. The first feature group characterizes the waveform pattern of the EEG signal. The remaining two feature groups are developed to resolve the difficulties caused by interpersonal EEG signal differences. Results and comparison with existing methods: The proposed approach was tested with 1,003 subjects, and the SWS detection results show kappa coefficient at 0.66, an accuracy level of 0.973, a sensitivity score of 0.644 and a positive predictive value of 0.709. By excluding sleep apnea patients and persons whose age is older than 55, the SWS detection results improved to kappa coefficient, 0.76; accuracy, 0.963; sensitivity, 0.758; and positive predictive value, 0.812. Conclusions: With newly developed signal features, this study proposed and tested a single-channel EEG-based SWS detection method. The effectiveness of the proposed approach was demonstrated by applying it to detect the SWS of 1003 subjects. Our test results show that a low SWS ratio and sleep apnea can degrade the performance of SWS detection. The results also show that a large and accurately staged sleep dataset is of great importance when developing automatic sleep staging methods

    Diagnosis of single-subject and group fMRI data with SPMd

    Full text link
    Except for purely nonparametric methods, statistical methods depend on assumptions about the distribution of the data studied. While these assumptions are easily checked for a single univariate dataset with diagnostic plots, in the massively univariate model used with functional MRI (fMRI) it is impractical to check with a massive number of plots. In previous work we have demonstrated how to diagnose model assumptions and lack-of-fit for single-subject fMRI models using a working assumption of independent errors; our work depended on images and time series of summary statistics that, when simultaneously viewed dynamically, identify problem scans and voxels. In this article we extend our previous work to account for temporal autocorrelation in single-subject models and show how analogous methods can be used on group models where multiple subjects are studied. We apply these methods to the single-subject Functional Image Analysis Contest (FIAC) data and find several anomalies, but none that appear to invalidate the results for that subject. With the group FIAC data we find one subject (and possibly two more) that demonstrate a different pattern of activity. None of our conclusions would be arrived at by simply looking at images of t statistics, demonstrating the importance of model assessment through exploration of the data and diagnosis of model assumptions. Hum Brain Mapp 27:442–451, 2006. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50665/1/20253_ftp.pd

    Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature

    Get PDF
    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C

    Prognosticators and Risk Grouping in Patients with Lung Metastasis from Nasopharyngeal Carcinoma: A more accurate and appropriate assessment of prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung metastases arising from nasopharyngeal carcinomas (NPC) have a relatively favourable prognosis. The purpose of this study was to identify the prognostic factors and to establish a risk grouping in patients with lung metastases from NPC.</p> <p>Methods</p> <p>A total of 198 patients who developed lung metastases from NPC after primary therapy were retrospectively recruited from January 1982 to December 2000. Univariate and multivariate analyses of clinical variables were performed using Cox proportional hazards regression models. Actuarial survival rates were plotted against time using the Kaplan-Meier method, and log-rank testing was used to compare the differences between the curves.</p> <p>Results</p> <p>The median overall survival (OS) period and the lung metastasis survival (LMS) period were 51.5 and 20.9 months, respectively. After univariate and multivariate analyses of the clinical variables, age, T classification, N classification, site of metastases, secondary metastases and disease-free interval (DFI) correlated with OS, whereas age, VCA-IgA titre, number of metastases and secondary metastases were related to LMS. The prognoses of the low- (score 0-1), intermediate- (score 2-3) and high-risk (score 4-8) subsets based on these factors were significantly different. The 3-, 5- and 10-year survival rates of the low-, intermediate- and high-risk subsets, respectively (P < 0.001) were as follows: 77.3%, 60% and 59%; 52.3%, 30% and 27.8%; and 20.5%, 7% and 0%.</p> <p>Conclusions</p> <p>In this study, clinical variables provided prognostic indicators of survival in NPC patients with lung metastases. Risk subsets would help in a more accurate assessment of a patient's prognosis in the clinical setting and could facilitate the establishment of patient-tailored medical strategies and supports.</p

    Poly[tetra­aqua-di-μ4-malonato-barium(II)cadmium(II)]

    Get PDF
    In the title complex, [BaCd(C3H2O4)2(H2O)4]n, the BaII atoms, located on crystallographic twofold axes, adopt slightly distorted square-anti­prismatic coordination geometries, while the CdII atoms, which lie on crystallographic centres of symmetry, have a distorted octa­hedral coordination. Each malonate dianion binds two different CdII atoms and two different BaII atoms. This connectivity generates alternating layers along [100] in the structure, with one type containing CdII cations and malonate dianions, while the other is primarily composed of BaII ions and coordinated water mol­ecules. The water mol­ecules also participate in extensive O—H⋯O hydrogen bonding

    Tillage condition effects on soil/plow-breast flow interaction of a horizontally reversible plow

    Get PDF
    Abstract : The horizontally reversible plow (HRP) is commonly utilized because of higher performances than the regular mold-board plow. Soil/plow surface flow interaction during HRP tillage trends to incur so severe pressure on the plow-breast as to reduce the plow life. This paper numerically characterized the soil/plow-breast flow interaction and subsequently assessed tillage-condition effects on the plow-breast surface. These tillage conditions herein involved tool speed and operation-al depth. The simulations showed that for either tool speed or operational depth the maximum pressure appeared at the plow-shank of the plow-breast and that the soil pressures were increased with them. The computational fluid dynamics (CFD) based predictions qualitatively agreed with the preliminary experimental results at the identified settings with scanning electronic microscopy. Once again, CFD analysis is demonstrated to be feasible and effective enough to provide insight into improve the horizontally reversible plow by predicting real soil behaviors
    corecore