32 research outputs found

    Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines

    Get PDF
    Salinity is one major abiotic stress that restrict plant growth and crop productivity. In maize (Zea mays L), salt stress causes significant yield loss each year. However, indices of maize response to salt stress are not completely explored and a desired method for maize salt tolerance evaluation is still not established. A Chinese leading maize variety Jingke968 showed various resistance to environmental factors, including salt stress. To compare its salt tolerance to other superior maize varieties, we examined the physiological and growth responses of three important maize hybrids and their related inbred lines under the control and salt stress conditions. By compar- ing the physiological parameters under control and salt treatment, we demonstrated that different salt tolerance mechanisms may be involved in different genotypes, such as the elevation of superoxide dismutase activity and/ or proline content. With Principal Component Analysis of all the growth indicators in both germination and seedling stages, along with the germination rate, superoxide dismutase activity, proline content, malondialdehyde content, relative electrolyte leakage, we were able to show that salt resistance levels of hybrids and their related inbred lines were Jingke968 > Zhengdan958 > X1132 and X1132M > Jing724 > Chang7-2 > Zheng58 > X1132F, respectively, which was consistent with the saline field observation. Our results not only contribute to a better understanding of salt stress response in three important hybrids and their related inbred lines, but also this evaluation system might be applied for an accurate assessment of salt resistance in other germplasms and breeding material

    Spatial Difference of Transit-Based Accessibility to Hospitals by Regions Using Spatially Adjusted ANOVA

    No full text
    This paper proposes a spatial difference analysis method for evaluating transit-based accessibility to hospitals using spatially adjusted ANOVA. This method specializes in examining spatial variations of accessibility to hospitals by regions (i.e. administrative districts or subdistricts). The spatial lag model is applied to adjust traditional ANOVA, which reduces spatial dependency and avoids false rejection to null hypothesis. Multiple comparison methods are used for further detection of differences in accessibility between regions. After multiple comparison, accessibility within regions is classified into three levels. The study is conducted on two scales—administrative districts and subdistricts—to discuss spatial variations in macro and micro dimensions respectively in the central part of Wuhan, China. Accessibility is calculated by using a simple model and a gravity model. The final classification results showed that the spatially adjusted method is more reliable than the traditional non spatially adjusted one and the gravity model can better detect more hidden information about the inequal distribution of medical resources. It is also found that the subdistricts, which have significantly lower accessibility to hospitals than others, are mainly distributed in Hongshan and Qingshan district. Our study hopes to shed new lights in spatial difference analysis for accessibility and provide policy recommendations that would promote equality in provisions of public health services

    Prevention and Treatment of Osteoporosis Using Chinese Medicinal Plants: Special Emphasis on Mechanisms of Immune Modulation

    No full text
    Numerous studies have examined the pathogenesis of osteoporosis. The causes of osteoporosis include endocrine factors, nutritional status, genetic factors, physical factors, and immune factors. Recent osteoimmunology studies demonstrated that the immune system and immune factors play important regulatory roles in the occurrence of osteoporosis, and people should pay more attention to the relationship between immunity and osteoporosis. Immune and bone cells are located in the bone marrow and share numerous regulatory molecules, signaling molecules, and transcription factors. Abnormal activation of the immune system alters the balance between osteoblasts and osteoclasts, which results in an imbalance of bone remodeling and osteoporosis. The incidence of osteoporosis is also increasing with the aging of China’s population, and traditional Chinese medicine has played a vital role in the prevention and treatment of osteoporosis for centuries. Chinese medicinal plants possess unique advantages in the regulation of the immune system and the relationships between osteoporosis and the immune system. In this review, we provide a general overview of Chinese medicinal plants in the prevention and treatment of osteoporosis, focusing on immunological aspects

    Role of nitrogen source flow on the growth of 2D GaN crystals

    No full text
    As a class of non-layered compounds, ultrathin III-V semiconductors possess excellent physical and chemical properties, are promising candidates for optoelectronic and thermoelectric applications. Due to the strong chemical bonds both in plane and out of plane, the controllable growth of two-dimensional (2D) III-V semiconductors is quite challenging. In this study, we report the successful synthesis of 2D GaN crystals by chemical vapor deposition (CVD) on liquid Ga. The nitrogen source flow is found to be a key factor that governs the transformation of GaN growth from 2D layered mode to three-dimensional (3D) island mode. This study provides further understanding on the growth of non-layered 2D III-nitride materials

    Labeling Lysosomes and Tracking Lysosome-Dependent Apoptosis with a Cell-Permeable Activity-Based Probe

    No full text
    In this study, we describe a new strategy for labeling and tracking lysosomes with a cell-permeable fluorescent activity-based probe (CpFABP) that is covalently bound to select lysosomal proteins. Colocalization studies that utilized LysoTracker probes as standard lysosomal markers demonstrated that our novel probe is effective in specifically labeling lysosomes in various kinds of live cells. Furthermore, our studies revealed that this probe has the ability to label fixed cells, permeabilized cells, and NH<sub>4</sub>Cl-treated cells, unlike LysoTracker probes, which show ineffective labeling under the same conditions. Remarkably, when applied to monitor the process of lysosome-dependent apoptosis, our probe not only displayed the expected release of lysosomal cathepsins from lysosomes into the cytosol but also revealed additional information about the location of the cathepsins during apoptosis, which is undetectable by other chemical lysosome markers. These results suggest a wide array of promising applications for our probe and provide useful guidelines for its use as a lysosome marker in lysosome-related studies
    corecore