201 research outputs found

    Three-Body Recombination near a Narrow Feshbach Resonance in 6 Li

    Get PDF
    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s-wave magnetic Feshbach resonance of 6Li−6Li at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μK to above 200 μK, we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures

    Optimal Distributed Beamforming for MISO Interference Channels

    Full text link
    We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after certain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.Comment: 7 Pages, 6 figures, extended version for the one in Proceeding of Asilomar, CA, 201

    Parametric cooling of a degenerate Fermi gas in an optical trap

    Get PDF
    We demonstrate a novel technique for cooling a degenerate Fermi gas in a crossed-beam optical dipole trap, where high-energy atoms can be selectively removed from the trap by modulating the stiffness of the trapping potential with anharmonic trapping frequencies. We measure the dependence of the cooling effect on the frequency and amplitude of the parametric modulations. It is found that the large anharmonicity along the axial trapping potential allows to generate a degenerate Fermi gas with anisotropic energy distribution, in which the cloud energy in the axial direction can be reduced to the ground state value

    Review on the methods of automatic liver segmentation from abdominal images

    Get PDF
    Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation.We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed to-gether to achieve better segmentation performance

    Multiple Kernel-Based Multimedia Fusion for Automated Event Detection from Tweets

    Get PDF
    A method for detecting hot events such as wildfires is proposed. It uses visual and textual information to improve detection. Starting with picking up tweets having texts and images, it preprocesses the data to eliminate unwanted data, transforms unstructured data into structured data, then extracts features. Text features include term frequency-inverse document frequency. Image features include histogram of oriented gradients, gray-level co-occurrence matrix, color histogram, and scale-invariant feature transform. Next, it inputs the features to the multiple kernel learning (MKL) for fusion to automatically combine both feature types to achieve the best performance. Finally, it does event detection. The method was tested on Brisbane hailstorm 2014 and California wildfires 2017. It was compared with methods that used text only or images only. With the Brisbane hailstorm data, the proposed method achieved the best performance, with a fusion accuracy of 0.93, comparing to 0.89 with text only, and 0.85 with images only. With the California wildfires data, a similar performance was recorded. It has demonstrated that event detection in Twitter is enhanced and improved by combination of multiple features. It has delivered an accurate and effective event detection method for spreading awareness and organizing responses, leading to better disaster management

    Scaling law for three-body collisions near a narrow s-wave Feshbach resonance

    Full text link
    Ultracold atomic gases provide a controllable system to study the inelastic processes for three-body systems, where the three-body recombination rate depends on the scattering length scaling. Such scalings have been confirmed in bosonic systems with various interaction strengths, but their existence with fermionic atoms remains elusive. In this work, we report on an experimental investigation of the scaling law for the three-body atomic loss rate L3L_3 in a two-component 6^6Li Fermi gas with the scattering length a<0a<0. The scaling law is validated within a certain range of aa near the narrow ss-wave Feshbach resonance, where L3Ta2.60(5)L_3\propto T|a|^{2.60(5)}, and TT is the gas temperature. The scaling law is observed to have an upper and a lower bound in terms of the scattering length. For the upper bound, when aa\rightarrow \infty, the power-law scaling is suppressed by the unitary behavior of the resonance caused by the strong three-body collisions. For the lower bound, a0a\rightarrow 0, the finite range effect modifies the scaling law by the effective scattering length LeL_e. These results indicate that the three-body recombination rate in a fermionic system could be characterized by the scaling law associated with the generalized Efimov physics.Comment: 11 pages, 3 figures, 1 tabl

    Unification of quantum Zeno-anti Zeno effects and parity-time symmetry breaking transitions

    Full text link
    The decay of any unstable quantum state can be inhibited or enhanced by carefully tailored measurements, known as the quantum Zeno effect (QZE) or anti-Zeno effect (QAZE). To date, studies of QZE (QAZE) transitions have since expanded to various system-environment coupling, in which the time evolution can be suppressed (enhanced) not only by projective measurement but also through dissipation processes. However, a general criterion, which could extend to arbitrary dissipation strength and periodicity, is still lacking. In this letter, we show a general framework to unify QZE-QAZE effects and parity-time (PT) symmetry breaking transitions, in which the dissipative Hamiltonian associated to the measurement effect is mapped onto a PT-symmetric non- Hermitian Hamiltonian, thus applying the PT symmetry transitions to distinguish QZE (QAZE) and their crossover behavior. As a concrete example, we show that, in a two-level system periodically coupled to a dissipative environment, QZE starts at an exceptional point (EP), which separates the PT-symmetric (PTS) phase and PT-symmetry broken (PTB) phase, and ends at the resonance point (RP) of the maximum PT-symmetry breaking; while QAZE extends the rest of PTB phase and remains the whole PTS phase. Such findings reveal a hidden relation between QZE-QAZE and PTS-PTB phases in non-Hermitian quantum dynamics
    corecore