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We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a
narrow s-wave magnetic Feshbach resonance of 6Li-6Li at 543.3 G. By examining both the magnetic field
dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few
μK to above 200 μK, we show that three-atom recombination through a narrow resonance follows a universal
behavior determined by the long-range van der Waals potential and can be described by a set of rate equations
in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying
physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero
partial waves, and not only at ultracold temperatures, but also at much higher temperatures.
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Molecule formation through three-body recombination is
one of the most fundamental chemical reactions as it pertains
to the very origin of molecules [1,2] and their relative
concentration to atomic species. It is also the key to
understanding the initial stages of condensation where atoms
form molecules which further recombine with other atoms
or molecules to grow into bigger molecules, clusters, and,
eventually, to mesoscopic and macroscopic objects. As a
reflection of the fundamental difficulties in quantum few-
body systems, progress on three-body recombination has
been excruciatingly slow. Fundamental questions such as the
relative importance of direct (background or nonresonant)
and indirect (successive pairwise or resonant) processes [3,4]
seem as fresh as they were decades ago [5,6]. Unlike deeply
bound few-body bound states, for which large basis expan-
sion works to a degree (see, e.g., [7]), three-body recombi-
nation occurs at much higher energies around the three-body
breakup threshold where the number of open channels for
most atoms other than helium goes to practically infinite,
making standard numerical methods [8] impractical.
Cold-atom experiments have provided the experimental

background for breakthroughs in few-body physics. In such
experiments, two-body interaction can be precisely con-
trolled via a Feshbach resonance (FR) [9], and remarkably,
manifestations of three-body recombination have become
one of the most routinely measured quantities through trap
loss. The vast amount of data thus generated has enabled
considerable progress in few-body physics, first, in eluci-
dating the Efimov universality [10–13] and, more recently,
in discovery and exploration of the van der Waals univer-
sality (see, e.g., Refs. [14–20]). Still, much of the progress
has, so far, been limited to the zero temperature, to broad
s-wave FR’s, and to the Efimov regime where the

s-wave scattering lengths among the interacting particles
are much greater than the ranges of interactions as
measured by their corresponding van der Waals length
scales. While experiments in other regimes are possible
(see, e.g., Refs. [21,22]), they have not received as much
attention partly due to the scarcity of the corresponding
theories. Further theoretical progress, as well as exciting
experimental developments such as state-to-state measure-
ments [23], promise much further progress in few-body
physics and chemistry.
In this Letter, first, we reassert that universal behaviors for

few-atom and many-atom systems exist much beyond the
zero temperature and beyond the s wave, as first suggested
some years ago [24]. They exist to the 1-K regime similar to
the corresponding quantum-defect theory (QDT) for two-
body interactions [25,26] and can be further extended to
greater temperature regimes through multiscale QDT [27].
Such broader-sense van derWaals universal behaviors can be
mathematically rigorously defined in a way similar to the
definitions of universal equations of states at the van der
Waals length scale [28–30]. They will be investigated as a
part of a QDT for few-atom and many-atom systems. By
expanding the region of universal behavior beyond the zero
temperature and beyond a broad s-wave resonance, one will,
finally, make the connection between studies of idealized
few-body systems and real chemistry [2–6,8]. We take a step
in this direction here by experimentally measuring and
theoretically analyzing the three-atom recombination around
a narrow s-wave magnetic FR of 6Li-6Li around 543.3 G.We
show that, at ultracold, but finite, temperatures, three-body
recombination is dominated by the indirect process if there
exists a narrow resonance within kBT above the threshold.
Further, we show that the rate constant describing this
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successive pairwise process follows a universal behavior
determined by the long-range van der Waals potential. An
analytic formula is presented for the rate constant describing
both its dependence on the temperature and its dependence
on the resonance position, which, in our case, is tunable via a
magnetic field.
Experiment.—We prepare a gas of 6Li atoms in the two

lowest hyperfine states of F ¼ 1=2,mF ¼ �1=2 [labeled as
a (þ1=2) and b (−1=2) states, respectively] in a magneto-
optical trap. The precooled atoms are then transferred into a
crossed-beam optical dipole trap made by a fiber laser with
100 watt output. The bias magnetic field is quickly swept to
330 G to implement evaporative cooling [31,32]. A noisy
radio-frequency pulse is then applied to prepare a 50∶50 spin
mixture. At 330 G, the trap potential can be lowered down to
0.1% of the full trap depth (the full trap depth is around
5.6 mK) to obtain a degenerate Fermi gas. After that, the
magnetic field is swept well above the narrow FR at 550 G to
calibrate the temperature and the initial atom number N0.
Here, the s-wave scattering length of the a − b state is
close to the background scattering length of approximately
0.96β6, for which the gas is weakly interacting [here, β6 ≔
ð2μC6=ℏ2Þ1=4 is the van der Waals length scale for 6Li-6Li
interaction [25]]. The temperature of a weakly interacting
Fermi gas is then measured by fitting the 1D density profile
with a finite temperature Thomas-Fermi distribution [33].
To study the temperature dependence of the three-body
recombination rate, atom clouds are prepared in a temper-
ature range between 4 and 225 μK by controlling the final
trap depth and the evaporative cooling time.
To study the three-body recombination rate around the

narrow FR at 543.3 G, the magnetic field is fast swept from
550 G to a target field Bt near the narrow resonance, where
we hold the atom cloud for a time duration t. With
techniques such as recording the real-time magnets current
to monitor the fluctuation of the magnetic field, a field
resolution of better than 0.09 G is achieved for all of our
data sets. (See the Supplemental Material [34].) After the
holding period, the number of atoms left in the trap, NðtÞ,
and the Gaussian widths of the cloud, σxðy;zÞ, are extracted
from the 2D column density of the absorption images. To
avoid the high column density induced error of the atom
number, we turn off the optical trap after the holding period
and take the absorption images of time-of-flight clouds.
Our atomic vapor is a two-component thermal gas with

Na atoms in state a and Nb atoms in state b. If the densities
for atoms in states a and b start out the same, they will
remain the same, namely na ¼ nb ≕ n, and decay with the
same rate, by

dn
dt

¼ −L3n3; ð1Þ

where L3 is the three-body recombination rate. The total
atom number Na ¼ Nb≕N is determined by integrating

the density of the whole cloud, where we assume the profile
is a Gaussian of the form nðx; y; zÞ ¼ n0 exp½−x2=ð2σ2xÞ −
y2=ð2σ2yÞ − z2=ð2σ2zÞ� with n0 being the atom density at the
center of the cloud. The integration gives us

dNðtÞ
dt

¼ −
L3

ð2 ffiffiffi
3

p
πÞ3σ2xσ2yσ2y

N3ðtÞ; ð2Þ

implying that 1=N2 has a linear dependence on the holding
time t with

1

N2ðtÞ ¼
2L3

ð2 ffiffiffi
3

p
πÞ3σ2xσ2yσ2y

tþ 1

N2ð0Þ : ð3Þ

By fitting experimental 1=N2 to Eq. (3), we extract L3.
(See the Supplemental Material [34].)
We measure L3 as a function of the magnetic field at

various temperatures from 4.2 to 225 μK. They range from
at least one Fermi temperature TF to well above TF and are
all in the thermal gas regime. (See the Supplemental
Material [34].) The results are shown in Fig. 1, and will
be compared with theory.
Theory.—Our theory describes three-body recombina-

tion in a thermal gas and via a narrow resonance as an
indirect, successive pairwise process. A narrow resonance
can be treated as a bound molecular state weakly coupled to
a continuum. The time evolution of atomic number
densities, na and nb for atoms in states a and b, respec-
tively, and the number density nab of metastable molecules
in the resonance state ðabÞr, are described by a set of rate
equations

dna
dt

¼ þðΓr=ℏÞnab − Kabnanb

− KM
ADnanab þ KB

ADnanab þ KB
ADnbnab; ð4aÞ

dnb
dt

¼ þðΓr=ℏÞnab − Kabnanb

− KM
ADnbnab þ KB

ADnbnab þ KB
ADnanab; ð4bÞ

dnab
dt

¼ −ðΓr=ℏÞnab þ Kabnanb

− KADnanab − KADnbnab: ð4cÞ

Here, Γr is the width of the resonance. Kab is the rate
for the formation of metastable molecules via two-body
collision at temperature T. It is related to the resonance
width Γr by

Kab ¼ ðΓr=ℏÞð
ffiffiffi
2

p
λTÞ3ð2lr þ 1Þe−ϵr=kBT; ð5Þ

for a resonance in partial wave lr located at energy ϵr. Here,
λT ≔ ð2πℏ2=mkBTÞ1=2 is the thermal wave length of an
atom at temperature T. The KM

AD in Eq. (4) is the rate of
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atom-dimer interaction leading to the formation of a stable
molecule, namely for the processes of aþ ðabÞr → aþ
ðabÞM and aþ ðabÞr → bþ ðaaÞM, or bþ ðabÞr → bþ
ðabÞM and bþ ðabÞr → aþ ðbbÞM. KB

AD is the rate of

breakup of a metastable molecule via aþ ðabÞr → 2aþ b
or bþ ðabÞr → aþ 2b. KAD ¼ KM

AD þ KB
AD is the total

inelastic and reactive rate for atom-dimer interaction. This
rate equation ignores the contribution from the direct
three-body process to focus on the contribution from the
indirect process, which will be shown later to dominate at
cold temperatures.
The seemingly complex rate equation, Eq. (4), simplifies

if the Γr and the time of measurement have allowed nab to
reach a steady state, characterized by dnab=dt ¼ 0. In the
steady state, one obtains

nab¼
ðΓr=ℏÞ

ðΓr=ℏÞþKADðnaþnbÞ
23=2λ3Tð2lrþ1Þe−ϵr=kBT: ð6Þ

Under the further initial condition of naðt ¼ 0Þ ¼
nbðt ¼ 0Þ, corresponding to our experiment, and the con-
dition of Γr=ℏ ≫ KADðna þ nbÞ, we obtain, in steady state,
naðtÞ ¼ nbðtÞ≕ nðtÞ and satisfy Eq. (1) with L3 given by

L3ðT; ϵrÞ ¼ 3KM
ADðT; ϵrÞð

ffiffiffi
2

p
λTÞ3ð2lr þ 1Þe−ϵr=kBT: ð7Þ

All the required conditions are well satisfied in our experi-
ment. We caution, however, that the typical three-body
rate equation, Eq. (1), should not be taken for granted for
indirect processes. They can have other behaviors under
different conditions.
Through Eq. (7), the rate equation, Eq. (4), reduces the

understanding of L3 to the understanding of KM
AD which is

the rate for the formation of bound molecules in atom
interaction with a metastable dimer. This bimolecular
process differs from the typical atom-(truly bound) dimer
interaction in that its inelastic component does not always
lead to the formation of bound molecules even in the limit
of zero atom-dimer energy. It can also lead to the breakup
of the metastable dimer, resulting in three free atoms. Our
theory for KM

AD is based on the multichannel quantum
defect theory for reactions and inelastic processes as
outlined in Ref. [35]. Following an analysis similar to
what led to the quantum Langevin (QL) model for reactions
[35,36], we obtain

KM
ADðT; ϵrÞ ¼ sADK

2ffiffiffi
π

p
Z

∞

0

dxx1=2e−x

×
X∞
l¼0

Mlrlðϵr þ kBTxÞWð6Þ
url ðTsxÞ: ð8Þ

Here, sADK is the rate scale for atom-dimer interaction with
a van der Waals −CAD

6 =R6 long range potential. More
specifically, sADK ≔ πℏβAD6 =μAD, where μAD is the atom-
dimer reduced mass and βAD6 ≔ ð2μADCAD

6 =ℏ2Þ1=4 is the
length scale associated with the atom-dimer van der Waals
potential. Mlrlðϵf ¼ ϵr þ ϵADÞ ≔

P
f∈MjðSceffÞfij2 is a

short-range branching ratio for transitions into bound

(a)

(b)

(c)

(d)

(e)

FIG. 1. L3ðT; BÞ as a function of the magnetic field B at
temperatures 4.2 μK (a), 41 μK (b), 75 μK (c), 146 μK (d),
225 μK (e). The red lines are the fits to theory to be discussed
later. The magnetic FR crosses the threshold at B0 ¼ 543.25 G.
The trap losses for B < B0 are due to higher-order processes that
are not considered in this Letter.
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molecular states characterized by set fMg, with Sceff being
the effective short-range S matrix characterizing atom-
dimer, namely three-body interaction within the range of

the van der Waals length scale [25,35]. Wð6Þ
url ðϵsÞ is the

universal partial inelastic and reactive QL rate for partial
wave l [35]. Ts ≔ T=sADT is a scaled temperature, with
sADT being the temperature scale given by sADT ≔ sADE =kB
where sADE ≔ ðℏ2=2μADÞð1=βAD6 Þ2 is the energy scale
associated with βAD6 .
Equations (7) and (8) provide a foundation for under-

standing the universal behaviors of three-body recombina-
tion via a narrow resonance over a wide range of energies
and temperatures. We focus, here, on an s-wave resonance
(lr ¼ 0) and on the ultracold temperature regime of
T ≪ sADT (namely Ts ≪ 1), to derive an analytic formula
for L3 that is most useful in current experiments. Using
the unitarity of an S matrix, we can write MlrlðϵfÞ ¼
1 −

P
f∈BjðSceffÞfij2, namely in terms of the short-range

branching ratio into the three-body breakup channels fBg.
Taking advantage of the short-range S matrix being
insensitive to energy and angular momenta [25,37], the
short-range branching ratio to bound molecular states is
approximately a constantMlr¼0l¼0ðϵfÞ ≈ℳ withℳ being
a dimensionless three-body parameter related to Sceff and
constrained by 0 < ℳ ≤ 1. Substituting this result into
Eq. (8), we obtain for an s-wave resonance (lr ¼ 0) in the
ultracold region of T ≪ sADT

KM
ADðT; ϵrÞ ≈ℳKQLð6Þ

AD ðTsÞ; ð9Þ

with KQLð6Þ
AD ðTsÞ being the universal QL rate that is well

approximated in the ultracold s-wave region by [35]

KQLð6Þ
AD ðTsÞ ≈ sADK 4āð6Þsl¼0

�
1 −

4āð6Þsl¼0ffiffiffi
π

p T1=2
s

�
; ð10Þ

where āð6Þsl¼0 ¼ 2π=½Γð1=4Þ�2 ≈ 0.477 988 8 is a universal
number that represents the scaled mean s-wave scattering
length for a −1=R6-type van der Waals potential [38].
Substituting Eq. (9) into Eq. (7), we obtain

L3ðT; ϵrÞ ≈ 3ℳKQLð6Þ
AD ðTsÞð

ffiffiffi
2

p
λTÞ3e−ϵr=kBT: ð11Þ

In the presence of a narrow s-wave resonance within an
ultracold energy range of the order of kBT above the
threshold, Eq. (11) gives an analytic description of the
three-body recombination rate L3 as a function of both
the temperature and the resonance position, in terms of a
single dimensionless three-body parameter 0 < ℳ ≤ 1.
The resonance can, in principle, be of any origin, but a
magnetic FR offers a unique opportunity to tune the
resonance position and, thus, to test the predicted depend-
ence on ϵr.

Comparison between theory and experiment.—For
6Li, using C6 ¼ 1393.39 a:u: [39] for the atom-atom
potential, we have CAD

6 ≈ 2C6 ¼ 2786.78 a:u:, from which
we have βAD6 ¼ 79.8935 a:u:, sADT ¼ 3383.85 μK, and
sADK ¼2.1035×10−10 cm3=s. For our particular Feshbach
resonance, the resonance position is given by ϵr ¼
μrðB − B0Þ with μr ¼ 1.98μB being the differential magne-
tic moment for the resonance [9]. Equation (7) now gives us

L3ðT; BÞ ≈ 3KM
ADðTÞð

ffiffiffi
2

p
λTÞ3 exp

�
−
μrðB − B0Þ

kBT

�
: ð12Þ

Figure 1 shows the fits of this equation to experimental
loss spectra, giving experimental results of KM

ADðTÞ at
five different temperatures, tabulated in Table I and plotted
in Fig. 2. Our result for KM

AD at the lower end of the
temperatures, 4.2 μK, is consistent with the earlier result of
Hazlett et al. [21]. Figure 2 further shows that the temper-
ature dependence of the rate KM

ADðTÞ is well described by
analytic formulas, Eqs. (9) and (10), a fit to which gives us
the three-body parameter ℳ ¼ 0.25� 0.01, consistent
with 0 < ℳ ≤ 1.
Discussions and conclusions.—We have measured

and analyzed three-body recombination around a narrow
s-wave resonance and in a thermal gas regime. The
resonance is much narrower than kBT and is located in a

TABLE I. The measured results and error bars of KM
ADðTÞ

T (μK) δT (μK) KM
AD (10−10 cm3=s) δKM

AD (10−12 cm3=s)

4.2 0.2 1.04 8
41 4 0.878 7
75 4 0.803 6
146 7 0.794 6
225 11 0.720 5

FIG. 2. The rate constantKM
ADðTÞ near the 6Li narrow s-wave FR

resonance at 543.25 G. The red solid line is a fit of our theoretical
model, Eqs. (9) and (10), to our experimental measurements from
which the three-body parameter ℳ ¼ 0.25� 0.01 is extracted.
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neighborhood of kBT above the threshold. We have shown
that the recombination follows a universal behavior deter-
mined by the van der Waals potential with a single three-
body parameter ℳ. When applied to a magnetic FR, the
theory gives the line shape of the Feshbach spectrum,
namely L3 vs B, described by Eq. (12). It shows that the
line shape is temperature-dependent and has a width of the
order of kBT=μB (see, also, Ref. [21]). Other than the details
of ℳ, the results are equally applicable to identical bosons
and easily generalized to other cases.
The theory further shows that, in the presence of a

narrow s-wave resonance within kBT above the threshold,
the indirect process has a rate of the order ðℏ=mÞβ6λ3T,
which, at ultracold temperatures of T ≪ sT , is much greater
than those for the direct processes. For bosons, it is greater
by a factor of ðλT=β6Þ3 since the direct process has a rate of
the order ðℏ=mÞβ46 [40,41]. The enhancement factor is even
greater, by another ðsT=TÞ, for our two-component fermion
case for which the direct process has a rate of the order
ðℏ=mÞβ46ðT=sTÞ [40,41]. Thus, at ultracold temperatures,
the indirect process dominates the three-body recombina-
tion if there is a narrow s-wave resonance within kBT above
the threshold.
Many of the concepts of this work are applicable

to resonances in nonzero partial waves (see, e.g.,
Refs. [42–45]), the understanding of which will further
expand the temperature regime of three-body physics
towards practical chemistry [2–6,8]. More measurements
of ℳ for other narrow resonances and other systems will
further stimulate a deeper understanding of this three-body
parameter. It can be expected to be related in a universal
manner to short-range Kc matrix parameters Kc

S and Kc
T

for atom-atom interaction in (electronic) spin singlet and
triplet, respectively [26]. Such a relationship, when
revealed and understood, would signal the arrival of a
QDT for few-atom systems, and will represent a big step
forward in few-body physics and in chemistry.
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