22 research outputs found

    Open-World Weakly-Supervised Object Localization

    Full text link
    While remarkable success has been achieved in weakly-supervised object localization (WSOL), current frameworks are not capable of locating objects of novel categories in open-world settings. To address this issue, we are the first to introduce a new weakly-supervised object localization task called OWSOL (Open-World Weakly-Supervised Object Localization). During training, all labeled data comes from known categories and, both known and novel categories exist in the unlabeled data. To handle such data, we propose a novel paradigm of contrastive representation co-learning using both labeled and unlabeled data to generate a complete G-CAM (Generalized Class Activation Map) for object localization, without the requirement of bounding box annotation. As no class label is available for the unlabelled data, we conduct clustering over the full training set and design a novel multiple semantic centroids-driven contrastive loss for representation learning. We re-organize two widely used datasets, i.e., ImageNet-1K and iNatLoc500, and propose OpenImages150 to serve as evaluation benchmarks for OWSOL. Extensive experiments demonstrate that the proposed method can surpass all baselines by a large margin. We believe that this work can shift the close-set localization towards the open-world setting and serve as a foundation for subsequent works. Code will be released at https://github.com/ryylcc/OWSOL

    Taming Self-Supervised Learning for Presentation Attack Detection: De-Folding and De-Mixing

    Full text link
    Biometric systems are vulnerable to Presentation Attacks (PA) performed using various Presentation Attack Instruments (PAIs). Even though there are numerous Presentation Attack Detection (PAD) techniques based on both deep learning and hand-crafted features, the generalization of PAD for unknown PAI is still a challenging problem. In this work, we empirically prove that the initialization of the PAD model is a crucial factor for the generalization, which is rarely discussed in the community. Based on such observation, we proposed a self-supervised learning-based method, denoted as DF-DM. Specifically, DF-DM is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD. During De-Folding, the proposed technique will learn region-specific features to represent samples in a local pattern by explicitly minimizing generative loss. While De-Mixing drives detectors to obtain the instance-specific features with global information for more comprehensive representation by minimizing interpolation-based consistency. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both face and fingerprint PAD in more complicated and hybrid datasets when compared with state-of-the-art methods. When training in CASIA-FASD and Idiap Replay-Attack, the proposed method can achieve an 18.60% Equal Error Rate (EER) in OULU-NPU and MSU-MFSD, exceeding baseline performance by 9.54%. The source code of the proposed technique is available at https://github.com/kongzhecn/dfdm.Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Scene Consistency Representation Learning for Video Scene Segmentation

    Full text link
    A long-term video, such as a movie or TV show, is composed of various scenes, each of which represents a series of shots sharing the same semantic story. Spotting the correct scene boundary from the long-term video is a challenging task, since a model must understand the storyline of the video to figure out where a scene starts and ends. To this end, we propose an effective Self-Supervised Learning (SSL) framework to learn better shot representations from unlabeled long-term videos. More specifically, we present an SSL scheme to achieve scene consistency, while exploring considerable data augmentation and shuffling methods to boost the model generalizability. Instead of explicitly learning the scene boundary features as in the previous methods, we introduce a vanilla temporal model with less inductive bias to verify the quality of the shot features. Our method achieves the state-of-the-art performance on the task of Video Scene Segmentation. Additionally, we suggest a more fair and reasonable benchmark to evaluate the performance of Video Scene Segmentation methods. The code is made available.Comment: Accepted to CVPR 202

    Analysis of index gases of coal spontaneous combustion using fourier transform infrared spectrometer

    Get PDF
    Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS) is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH 4 , C 2 H 6 , C 3 H 8 , iso-C 4 H 10 , n-C 4 H 10 , C 2 H 4 , C 3 H 6 , C 2 H 2 , CO, and CO 2 ) are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2 × 10 −6 . All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    Study on prediction and optimization of gas–solid erosion on S-Zorb reactor distribution plate

    No full text
    Adsorption desulfurization of catalytic gasoline (S Zorb) is an important desulfurization measure that is performed to meet the environmental protection requirements before the final product oil is sold in the market. The desulfurization reactor is a gas–solid two-phase flow environment composed of high-temperature and high-pressure hydrogen-oil mixed gas and sorbent particles; erosion prominently occurs on the reactor distribution plate. This study selects the typical gas–solid two-phase flow conditions and defines the erosion mechanism of the gas–solid two-phase flow environment for the plastic material of E347. Moreover, an S Zorb desulfurization reactor model is constructed, the CFD-DEM model is adopted to predict the wall erosion characteristics in a gas–solid two-phase flow environment, typical erosion laws are obtained via calculations. The erosion laws under the influence of variable parameters are studied based on the orthogonal test, the orthogonal test results show the best parameter combination, the parameter combination yields the maximum erosion rate and high erosion area that are 29.9% and 17.3%, respectively, lower than the existing values. Moreover, an optimum scheme of the inner structure parameters of the reactor is determined for reducing erosion rate and area

    A Semi-supervised Learning Application for Hand Posture Classification

    No full text
    The rapid growth of HCI applications results in increased data size and complexity. For this, advanced machine learning techniques and data analysis solutions are used to prepare and process data patterns. However, the cost of data pre-processing, labelling, and classification can be significantly increased if the dataset is huge, complex, and unlabelled. This paper aims to propose a data pre-processing approach and semi-supervised learning technique to prepare and classify a big Motion Capture Hand Postures dataset. It builds the solutions via Tri-training and Co-forest techniques and compares them to figure out the best-fitted approach for hand posture classification. According to the results, Co-forest outperforms Tri-training in terms of Accuracy, Precision, recall, and F1-score

    Possible structural polymorphism in Al-bearing magnesiumsilicate post-perovskite

    No full text
    In the present study, we summarize indications for the existence of kinked post-perovskite structures in the MAS system. X-ray diffraction data and Raman spectra of aluminous magnesium metasilicate post-perovskite are inconsistent with the CaIrO3 structure. Instead the observations are consistent with structures intermediate between the perovskite and the CaIrO3 structure. Ab initio calculations show that the enthalpies of the kinked structures are slightly higher than the CaIrO_3 structure at 0 K. Finite temperature, minor element chemistry, kinetics of phase transformation, and actual stress regime are plausible reasons for the observed differences between the present and the previously reported post-perovskite phases

    Digitized Construction of Iontronic Pressure Sensor with Self-Defined Configuration and Widely Regulated Performance

    No full text
    Flexible pressure sensors are essential components for wearable smart devices and intelligent systems. Significant progress has been made in this area, reporting on excellent sensor performance and fascinating sensor functionalities. Nevertheless, geometrical and morphological engineering of pressure sensors is usually neglected, which, however, is significant for practical application. Here, we present a digitized manufacturing methodology to construct a new class of iontronic pressure sensors with optionally defined configurations and widely modulated performance. These pressure sensors are composed of self-defined electrode patterns prepared by a screen printing method and highly tunable pressure-sensitive microstructures fabricated using 3D printed templates. Importantly, the iontronic pressure sensors employ an iontronic capacitive sensing mechanism based on mechanically regulating the electrical double layer at the electrolyte/electrode interfaces. The resultant pressure sensors exhibit high sensitivity (58 kPa−1), fast response/recovery time (45 ms/75 ms), low detectability (6.64 Pa), and good repeatability (2000 cycles). Moreover, our pressure sensors show remarkable tunability and adaptability in device configuration and performance, which is challenging to achieve via conventional manufacturing processes. The promising applications of these iontronic pressure sensors in monitoring various human physiological activities, fabricating flexible electronic skin, and resolving the force variation during manipulation of an object with a robotic hand are successfully demonstrated
    corecore