742 research outputs found

    N=1 super Yang-Mills on a (3+1) dimensional transverse lattice with one exact supersymmetry

    Get PDF
    We formulate N{\cal N}=1 super Yang-Mills theory in 3+1 dimensions on a two dimensional transverse lattice using supersymmetric discrete light cone quantization in the large-NcN_c limit. This formulation is free of fermion species doubling. We are able to preserve one supersymmetry. We find a rich, non-trivial behavior of the mass spectrum as a function of the coupling gNcg\sqrt{N_c}, and see some sort of "transition" in the structure of a bound state as we go from the weak coupling to the strong coupling. Using a toy model we give an interpretation of the rich behavior of the mass spectrum. We present the mass spectrum as a function of the winding number for those states whose color flux winds all the way around in one of the transverse directions. We use two fits to the mass spectrum and the one that has a string theory justification appears preferable. For those states whose color flux is localized we present an extrapolated value for m2m^2 for some low energy bound states in the limit where the numerical resolution goes to infinity.Comment: 23(+2 for v3) pages, 19 figures; v2: a footnote added; v3: an appendix, comments, references added. The version to appear PR

    D-brane Description of New Open String Solutions in AdS(5)

    Full text link
    In this paper we find D-brane descriptions of some of new open string solutions that were found in 0804.3438[hep-th]. These D5-brane and D3-brane configurations give gravitational dual descriptions of Wilson loops in some particular representations.Comment: 13 pages, references adde

    Effects of a fundamental mass term in two-dimensional super Yang-Mills theory

    Get PDF
    We show that adding a vacuum expectation value to a gauge field left over from a dimensional reduction of three-dimensional pure supersymmetric Yang-Mills theory generates mass terms for the fundamental fields in the two-dimensional theory while supersymmetry stays intact. This is similar to the adjoint mass term that is generated by a Chern-Simons term in this theory. We study the spectrum of the two-dimensional theory as a function of the vacuum expectation value and of the Chern-Simons coupling. Apart from some symmetry issues a straightforward picture arises. We show that at least one massless state exists if the Chern-Simons coupling vanishes. The numerical spectrum separates into (almost) massless and very heavy states as the Chern-Simons coupling grows. We present evidence that the gap survives the continuum limit. We display structure functions and other properties of some of the bound states.Comment: 17 pp., 10 figs; substantially revised version to be published in Phys. Rev.

    Strings ending on branes from supergravity

    Full text link
    We study geometries produced by brane intersections preserving eight supercharges. Typical examples of such configurations are given by fundamental strings ending on Dp branes and we construct gravity solutions describing such intersections. The geometry is specified in terms of two functions obeying coupled differential equations and the boundary conditions are determined by distributions of D branes. We show that a consistency of type IIB supergravity constrains the allowed positions of the branes. The shapes of branes derived from gravity are found to be in a perfect agreement with profiles predicted by the DBI analysis. We also discuss related 1/4-BPS systems in M theory.Comment: 81 pages, added ref

    D1D5 microstate geometries from string amplitudes

    Get PDF
    We reproduce the asymptotic expansion of the D1D5 microstate geometries by computing the emission amplitudes of closed string states from disks with mixed D1D5 boundary conditions. Thus we provide a direct link between the supergravity and D-brane descriptions of the D1D5 microstates at non-zero string coupling. Microscopically, the profile functions characterizing the microstate solutions are encoded in the choice of a condensate for the twisted open string states connecting D1 and D5 branes.Comment: 21 pages; added reference

    Radiation from the non-extremal fuzzball

    Full text link
    The fuzzball proposal says that the information of the black hole state is distributed throughout the interior of the horizon in a `quantum fuzz'. There are special microstates where in the dual CFT we have `many excitations in the same state'; these are described by regular classical geometries without horizons. Jejjala et.al constructed non-extremal regular geometries of this type. Cardoso et. al then found that these geometries had a classical instability. In this paper we show that the energy radiated through the unstable modes is exactly the Hawking radiation for these microstates. We do this by (i) starting with the semiclassical Hawking radiation rate (ii) using it to find the emission vertex in the CFT (iii) replacing the Boltzman distributions of the generic CFT state with the ones describing the microstate of interest (iv) observing that the emission now reproduces the classical instability. Because the CFT has `many excitations in the same state' we get the physics of a Bose-Einstein condensate rather than a thermal gas, and the usually slow Hawking emission increases, by Bose enhancement, to a classically radiated field. This system therefore provides a complete gravity description of information-carrying radiation from a special microstate of the nonextremal hole.Comment: corrected typo

    Spectrum and thermodynamic properties of two-dimensional N=(1,1) super Yang-Mills theory with fundamental matter and a Chern-Simons term

    Get PDF
    We consider N=(1,1) super Yang-Mills theory in 1+1 dimensions with fundamentals at large-N_c. A Chern-Simons term is included to give mass to the adjoint partons. Using the spectrum of the theory, we calculate thermodynamic properties of the system as a function of the temperature and the Yang-Mills coupling. In the large-N_c limit there are two non-communicating sectors, the glueball sector, which we presented previously, and the meson-like sector that we present here. We find that the meson-like sector dominates the thermodynamics. Like the glueball sector, the meson sector has a Hagedorn temperature T_H, and we show that the Hagedorn temperature grows with the coupling. We calculate the temperature and coupling dependence of the free energy for temperatures below T_H. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature. Also the ratio of the free energies at strong coupling compared to weak coupling, r_{s-w}, for low temperatures grows quadratically with T. In addition, our data suggest that r_{s-w} tends to zero in the continuum limit at low temperatures.Comment: 34 p

    Note on Generalized Janus Configurations

    Full text link
    We study several aspects of generalized Janus configuration, which includes a theta term. We investigate the vacuum structure of the theory and find that unlike the Janus configuration without theta term there is no nontrivial vacuum. We also discuss BPS soliton configuration both by supersymmetry analysis and from energy functional. The half BPS configurations could be realized by introducing transverse (p,q)-strings in original brane configuration corresponding to generalized Janus configuration. It turns out the BPS soliton could be taken as modified dyon. We discuss the solution of half BPS equations for the sharp interface case. Moreover we construct less supersymmetric Janus configuration with theta term.Comment: 27 pages; References adde

    Pulsating Strings in Deformed Backgrounds

    Full text link
    This is a brief summary on pulsating strings in beta deformed backgrounds found recently.Comment: 8 pages. Talk presented at Quantum Theory and Symmetries 7, Prague, August 7-13, 201
    corecore