2,083 research outputs found

    Electron self-energy in A3C60 (A=K, Rb): Effects of t1u plasmon in GW approximation

    Full text link
    The electron self-energy of the t1u states in A3C60 (A=K, Rb) is calculated using the so-called GW approximation. The calculation is performed within a model which considers the t1u charge carrier plasmon at 0.5 eV and takes into account scattering of the electrons within the t1u band. A moderate reduction (35 %) of the t1u band width is obtained.Comment: 4 pages, revtex, 1 figure more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Circumstellar H-alpha from SN 1994D and future Type Ia supernovae: an observational test of progenitor models

    Full text link
    Searching for the presence of circumstellar material is currently the only direct way to discriminate between the different types of possible progenitor systems for Type Ia supernovae. We have therefore looked for narrow H-alpha in a high-resolution spectrum of the normal Type Ia supernova 1994D taken 10 days before maximum and only 6.5 days after explosion. We derive an upper limit of 2.0E-16 erg cm^{-2} s^{-1} for an unresolved emission line at the local H II region velocity. To estimate the limit this puts on wind density, we have made time-dependent photoionization calculations. Assuming spherical symmetry we find an upper limit of the mass loss rate which is roughly 1.5E-5 solar masses per year for a wind speed of 10 km s^{-1}. This limit can exclude only the highest-mass-loss-rate symbiotic systems as progenitors. We discuss the effect of asymmetry and assess the relative merits of early optical, radio and X-ray limits in constraining mass loss from Type Ia progenitors. We find that X-ray observations can probably provide the most useful limits on the progenitor mass loss, while high-resolution optical spectroscopy offers our only chance of actually identifying circumstellar hydrogen.Comment: 7 pages, LaTeX, 3 Postscript figures, mn.sty, psfig.tex; MNRAS, in pres

    Isospin phases of vertically coupled double quantum rings under the influence of perpendicular magnetic fields

    Get PDF
    Vertically coupled double quantum rings submitted to a perpendicular magnetic field BB are addressed within the local spin-density functional theory. We describe the structure of quantum ring molecules containing up to 40 electrons considering different inter-ring distances and intensities of the applied magnetic field. When the rings are quantum mechanically strongly coupled, only bonding states are occupied and the addition spectrum of the artificial molecules resembles that of a single quantum ring, with some small differences appearing as an effect of the magnetic field. Despite the latter has the tendency to flatten the spectra, in the strong coupling limit some clear peaks are still found even when B0B\neq 0 that can be interpretated from the single-particle energy levels analogously as at zero applied field, namely in terms of closed-shell and Hund's-rule configurations. Increasing the inter-ring distance, the occupation of the first antibonding orbitals washes out such structures and the addition spectra become flatter and irregular. In the weak coupling regime, numerous isospin oscillations are found as a function of BB.Comment: 27 pages, 11 figures. To be published in Phys. Rev.

    Physical Conditions in Circumstellar Gas surrounding SN 1987A 12 Years After Outburst

    Get PDF
    Two-dimensional spectra of Supernova 1987A were obtained on 1998 November 14-15 (4282 days after outburst) with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The slit sampled portions of the inner circumstellar ring at the east and west ansae as well as small sections of both the northern and southern outer rings. The temperature and density at these locations are estimated by nebular analysis of [N II], [O III], and [S II] emission line ratios, and with time-dependent photoionization/recombination models. The results from these two methods are mutually consistent. The electron density in the inner ring is ~ 4000 cm-3 for S II, with progressively lower densities for N II and O III. The electron temperatures determined from [N II] and [O III] line ratios are ~11,000 K and \~22,000 K, respectively. These results are consistent with evolutionary trends in the circumstellar gas from similar measurements at earlier epochs. We find that emission lines from the outer rings come from gas of lower density (n_e \la 2000 cm-3) than that which emits the same line in the inner ring. The N/O ratio appears to be the same in all three rings. Our results also suggest that the CNO abundances in the northern outer ring are the same as in the inner ring, contrary to earlier results of Panagia et al. (1996). Physical conditions in the southern outer ring are less certain because of poorer signal-to-noise data. The STIS spectra also reveal a weak Ha emission redshifted by ~100 km s-1 at p.a. 103\arcdeg that coincides with the recently discovered new regions that are brightening (Lawrence et al. 2000). This indicates that the shock interaction in the SE section of the inner ring commenced over a year before it became apparent in HST images.Comment: 25 pages, 6 figures, to appear in December 1, 2000 Astrophysical Journa

    Hydrodynamic theory of an electron gas

    Full text link
    The generalised hydrodynamic theory of an electron gas, which does not rely on an assumption of a local equilibrium, is derived as the long-wave limit of a kinetic equation. Apart from the common hydrodynamics variables the theory includes the tensor fields of the higher moments of the distribution function. In contrast to the Bloch hydrodynamics, the theory leads to the correct plasmon dispersion and in the low frequency limit recovers the Navies-Stocks hydrodynamics. The linear approximation to the generalised hydrodynamics is closely related to the theory of highly viscous fluids.Comment: 4 pages, revte

    Dipole Interactions and Electrical Polarity in Nanosystems -- the Clausius-Mossotti and Related Models

    Full text link
    Point polarizable molecules at fixed spatial positions have solvable electrostatic properties in classical approximation, the most familiar being the Clausius-Mossotti (CM) formula. This paper generalizes the model and imagines various applications to nanosystems. The behavior is worked out for a sequence of octahedral fragments of simple cubic crystals, and the crossover to the bulk CM law is found. Some relations to fixed moment systems are discussed and exploited. The one-dimensional dipole stack is introduced as an important model system. The energy of interaction of parallel stacks is worked out, and clarifies the diverse behavior found in different crystal structures. It also suggests patterns of self-organization which polar molecules in solution might adopt. A sum rule on the stack interaction is found and tested. Stability of polarized states under thermal fluctuations is discussed, using the one-dimensional domain wall as an example. Possible structures for polar hard ellipsoids are considered. An idea is formulated for enhancing polarity of nanosystems by intentionally adding metallic coatings.Comment: 18 pages (includes 6 embedded figures and 3 tables). New references, and other small improvements. Scheduled for publication by J. Chem. Phys., Jan. 200

    The evolution of ultraviolet emission lines from the circumstellar material surrounding SN 1987A

    Get PDF
    The presence of narrow high-temperature emission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolu- tionary status of the supernova's progenitor. A new analysis of the complete five-year set of low and high resolution IUE ultraviolet spectra of SN 1987A (1987.2--1992.3) provide fluxes for the N V 1240, N IV] 1486, He II 1640, OIII] 1665, NIII] 1751, and CIII] 1908 lines with significantly reduced random and systematic errors and reveals significant short-term fluctuations in the light curves. The N V, N IV] and N III] lines turn on sequentially over 15 to 20 days and show a progression from high to low ionization potential, implying an ioni- zation gradient in the emitting region. The line emission turns on suddenly at 83+/-4 days after the explosion, as defined by N IV]. The N III] line reaches peak luminosity at 399+/-15 days. A ring radius of (6.24+/-0.20)E{17} cm and inclination of 41.0+/-3.9 is derived from these times, assuming a circular ring. The probable role of resonant scattering in the N V light curve introduces systematic errors that leads us to exclude this line from the timing analysis. A new nebular analysis yields improved CNO abundance ratios N/C=6.1+/-1.1 and N/O=1.7+/-0.5, confirming the nitrogen enrichment found in our previous paper. From the late-time behavior of the light curves we find that the emission origi- nates from progressively lower density gas. We estimate the emitting mass near maximum (roughly 400 days) to be roughly 4.7E{-2} solar masses, assuming a filling factor of unity and an electron density of 2.6E4 cm^{-3}. These results are discussed in the context of current models for the emission and hydrodynamics of the ring.Comment: 38 pages, AASTeX v.4.0, 13 Postscript figures; ApJ, in pres
    corecore