717 research outputs found

    Screening for Abdominal Aortic Aneurysm among Patients Referred to the Vascular Laboratory is Cost-effective

    Get PDF
    AbstractScreening for abdominal aortic aneurysm (AAA) in high-risk groups has been recommended based on a high prevalence of disease, while being questioned due to a high frequency of co-morbidities and inferior life-expectancy. We evaluated the long-term outcome and the cost-effectiveness of selective AAA screening among patients referred to the vascular laboratory for arterial examination.MethodsA total of 5924 patients, referred to the vascular laboratory of a university hospital, were screened for AAA with ultrasound (definition: ∅≥30mm), 1993–2005. Outcome data were gathered through hospital records and the national population registry. A Markov model was used for health–economic evaluation.ResultsAn AAA was detected in 181 patients (mean age 72.8 years), of whom 21.5% underwent elective repair (perioperative mortality 5.1%) after 7.5 years of follow-up. Four of six patients diagnosed with AAA rupture were operated upon. Relative 5-year survival compared with the general Swedish population, controlled for age and sex, was 80.4% (95% confidence interval (CI): 70.8–88.8). The cost-effectiveness was robust in base-case (11 084 Euro/life year gained) and in sensitivity analyses of prevalence, cost and survival.ConclusionsPatients in whom AAA was detected at selective screening had inferior long-term survival and were operated on less frequently, compared with AAA patients described in previous studies. Yet, selective screening at the vascular laboratory was cost-effective

    Correction to: Economic evaluation of AbobotulinumtoxinA vs OnabotulinumtoxinA in real-life clinical management of cervical dystonia.

    Get PDF
    [This corrects the article DOI: 10.1186/s40734-020-0083-0.]

    Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals

    Get PDF
    Weeds remain a challenge in organic arable farming, as well as supply ecosystem services. The aim is to control weed densities while hosting a diverse and manageable weed community, preventing domination of few deleterious species. Therefore, we want to understand how specific species are stimulated, and which traits are selected for. This study focuses on crop diversity hypothesizing that (1) regions and (2) crop diversity function as filters for specific weed species traits. We conducted a weed monitoring in spring cereals over 2 years on organic farms in five northern European regions. Management and weed trait variables collected for the occurring species allowed an RLQ fourth-corner analysis. The weed communities were regionally specific, but trait selection was not observed, except in Latvia. Hence, the regional species pool provided different species with similar traits. Crop diversity within the management of spring cereals, such as undersowing and cereal frequency in the rotation, affected weed traits. The number of years under organic production selected no traits, although species numbers are known to increase. Hence, general weed species diversity increased, irrespective of traits. We conclude that organic management may support the agility within the weed community against selection of species and act as a buffer rather than as filter

    Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Get PDF
    We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.Comment: Accepted for publication in ApJ; 35 pages, 10 figures, 5 table

    Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65

    Get PDF
    Results on the obliquity of exoplanet host stars -- the angle between the stellar spin axis and the planetary orbital axis -- provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler Mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1-sigma level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favoured in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.Comment: Accepted for publication in ApJ; 46 pages, 11 figure

    Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology

    Full text link
    We present a study of 33 {\it Kepler} planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2\% (radius), 1.7\% (density), 3.3\% (mass), 4.4\% (distance), and 14\% (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1\% in density and radius, and 2\% and 7\% in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding an excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic {\it Kepler} host stars are older than the Sun.Comment: 25 pages, 17 figures, MNRAS accepte

    An Introduction to Data Analysis in Asteroseismology

    Full text link
    A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Kepler-93b: A Terrestrial World Measured to within 120 km, and a Test Case for a New Spitzer Observing Mode

    Get PDF
    We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusually precise constraints on both the planet and its host. We conduct an asteroseismic analysis of the Kepler photometry and conclude that the star has an average density of 1.652+/-0.006 g/cm^3. Its mass of 0.911+/-0.033 M_Sun renders it one of the lowest-mass subjects of asteroseismic study. An analysis of the transit signature produced by the planet Kepler-93b, which appears with a period of 4.72673978+/-9.7x10^-7 days, returns a consistent but less precise measurement of the stellar density, 1.72+0.02-0.28 g/cm^3. The agreement of these two values lends credence to the planetary interpretation of the transit signal. The achromatic transit depth, as compared between Kepler and the Spitzer Space Telescope, supports the same conclusion. We observed seven transits of Kepler-93b with Spitzer, three of which we conducted in a new observing mode. The pointing strategy we employed to gather this subset of observations halved our uncertainty on the transit radius ratio R_p/R_star. We find, after folding together the stellar radius measurement of 0.919+/-0.011 R_Sun with the transit depth, a best-fit value for the planetary radius of 1.481+/-0.019 R_Earth. The uncertainty of 120 km on our measurement of the planet's size currently renders it one of the most precisely measured planetary radii outside of the Solar System. Together with the radius, the planetary mass of 3.8+/-1.5 M_Earth corresponds to a rocky density of 6.3+/-2.6 g/cm^3. After applying a prior on the plausible maximum densities of similarly-sized worlds between 1--1.5 R_Earth, we find that Kepler-93b possesses an average density within this group.Comment: 20 pages, 9 figures, accepted for publication in Ap
    • …
    corecore