2,497 research outputs found

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    RFI Identification and Mitigation Using Simultaneous Dual Station Observations

    Full text link
    RFI mitigation is a critically important issue in radio astronomy using existing instruments as well as in the development of next-generation radio telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA involve multiple stations with spacings of up to a few thousands of kilometers and thus can exploit the drastically different RFI environments at different stations. As demonstrator observations and analysis for SKA-like instruments, and to develop RFI mitigation schemes that will be useful in the near term, we recently conducted simultaneous observations with Arecibo Observatory and the Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and using the mostly uncorrelated RFI between the two sites to excise RFI from several generic kinds of measurements such as giant pulses from Crab-like pulsars and weak HI emission from galaxies in bands heavily contaminated by RFI. This paper presents observations, analysis, and RFI identification and excision procedures that are effective for both time series and spectroscopy applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for publication in Radio Scienc

    Self-Renormalization of the Classical Quasilocal Energy

    Get PDF
    Pointlike objects cause many of the divergences that afflict physical theories. For instance, the gravitational binding energy of a point particle in Newtonian mechanics is infinite. In general relativity, the analog of a point particle is a black hole and the notion of binding energy must be replaced by quasilocal energy. The quasilocal energy (QLE) derived by York, and elaborated by Brown and York, is finite outside the horizon but it was not considered how to evaluate it inside the horizon. We present a prescription for finding the QLE inside a horizon, and show that it is finite at the singularity for a variety of types of black hole. The energy is typically concentrated just inside the horizon, not at the central singularity.Comment: 7 pages, 4 figure

    Venus Interior Structure Mission (VISM): Establishing a Seismic Network on Venus

    Get PDF
    Magellan radar data show the surface of Venus to contain a wide range of geologic features (large volcanoes, extensive rift valleys, etc.). Although networks of interconnecting zones of deformation are identified, a system of spreading ridges and subduction zones like those that dominate the tectonic style of the Earth do not appear to be present. In addition, the absence of a mantle low-viscosity zone suggests a strong link between mantle dynamics and the surface. As a natural follow-on to the Magellan mission, establishing a network of seismometers on Venus will provide detailed quantitative information on the large scale interior structure of the planet. When analyzed in conjunction with image, gravity, and topography information, these data will aid in constraining mechanisms that drive surface deformation

    Brown-York Energy and Radial Geodesics

    Full text link
    We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal energies for round spheres in spherically symmetric space-times from the point of view of radial geodesics. In particular, we show that the relation between the BY and MS energies is precisely analogous to that between the (relativistic) energy E of a geodesic and the effective (Newtonian) energy E_{eff} appearing in the geodesic equation, thus shedding some light on the relation between the two. Moreover, for Schwarzschild-like metrics we establish a general relationship between the BY energy and the geodesic effective potential which explains and generalises the recently observed connection between negative BY energy and the repulsive behaviour of geodesics in the Reissner-Nordstrom metric. We also comment on the extension of this connection between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    Glassy Transition and Aging in a Model without Disorder

    Full text link
    We study the off-equilibrium relaxational dynamics of the Amit-Roginsky Ď•3\phi^3 field theory, for which the mode coupling approximation is exact. We show that complex phenomena such as aging and ergodicity breaking are present at low temperature, similarly to what is found in long range spin glasses. This is a generalization of mode coupling theory of the structural glass transition to off-equilibrium situations.Comment: 9 pages, 1 uuencoded figure, LaTex, preprint NORDITA 94/3

    Molecular dark matter in galaxies

    Get PDF
    Clouds containing molecular dark matter in quantities relevant for star formation may exist in minihaloes of the type of cold dark matter included in many cosmological simulations or in the regions of some galaxies extending far beyond their currently known boundaries. We have systematically explored parameter space to identify conditions under which plane-parallel clouds contain sufficient column densities of molecular dark matter that they could be reservoirs for future star formation. Such clouds would be undetected or at least appear by current observational criteria to be uninteresting from the perspective of star formation. We use a time-dependent PDR code to produce theoretical models of the chemistry and emission arising in clouds for our chosen region of parameter space. We then select a subset of model clouds with levels of emission that are low enough to be undetectable or at least overlooked by current surveys. The existence of significant column densities of cold molecular dark matter requires that the background radiation field be several or more orders of magnitude weaker than that in the solar neighbourhood. Lower turbulent velocities and cosmic ray induced ionization rates than typically associated with molecular material within a kpc of the Sun are also required for the molecular matter to be dark. We find that there is a large region within the parameter space that results in clouds that might contain a significant mass of molecular gas whilst remaining effectively undetectable or at least not particularly noticeable in surveys. We note briefly conditions under which molecular dark matter may contain a dynamically interesting mass.Comment: 9 pages, 2 figures, accepted for publication in A&A; additional concluding paragraph added at proof stag
    • …
    corecore