274 research outputs found

    Toward atomic-scale doping of bismuth in silicon: the study of bismuth precursor molecules on silicon (100)

    Get PDF
    Single-atom dopants in silicon have been a topic of high interest since the Kane quantum computer was first proposed in 1998. Much work has since been dedicated toward the single-atom doping of lighter group 15 atoms into silicon with atomic-scale precision, with notable success, though significantly less toward heavier dopant atoms owing to the lack of readily available precursor molecules. This thesis investigates two novel potential precursor molecules for atomic bismuth: triphenylbismuth (TPB) and bismuth trichloride (BiCl3). Bismuth is a promising heavy dopant species in silicon-based electronic devices thanks to its high quantum information storage capacity, but currently lacks a suitable precursor. Neither of these molecules has previously been studied on the Si(100) surface. Using scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we demonstrate that TPB partially dissociates on Si(100) at room temperature, with bismuth atoms forming ad-dimers while phenyl remains on the surface. Annealing the surface causes complete molecular dissociation, followed by bismuth diffusion into the bulk. Phenyl desorption is not observed. We show that prior to dissociation, TPB bonds to the surface in a variety of configurations; using density functional theory calculations, we propose favorable bonding structures for the TPB molecule on Si(100). We also show that BiCl3, contrastingly, undergoes complete and spontaneous dissociation on Si(100) at room temperature, with some bismuth atoms forming ad-dimers while others remain as monomers constrained by adjacent chlorine atoms. We pro- pose key steps in the reaction pathway for room-temperature BiCl3 dissociation. We also demonstrate the molecule’s post-dissociation chemical behavior on Si(100) at higher temperatures, at varying levels of surface coverage. Our results demonstrate that BiCl3 is a promising candidate for a single-atom bismuth precursor, while TPB is less likely to be suitable. In combination with chlorine lithography, this paves the way for single-atom doping of bismuth in silicon devices

    Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending

    Get PDF
    A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending

    Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    Get PDF
    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life

    Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    Get PDF
    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life

    Bismuth trichloride as a molecular precursor for silicon doping

    Get PDF
    Dopant impurity species can be incorporated into the silicon (001) surface via the adsorption and dissociation of simple precursor molecules. Examples include phosphine (PH3), arsine (AsH3), and diborane (B2H6) for the incorporation of phosphorus, arsenic, and boron, respectively. Through exploitation of precursor surface chemistry, the spatial locations of these incorporated dopants can be controlled at the atomic scale via the patterning of a hydrogen lithographic resist layer using scanning tunneling microscopy (STM). There is strong interest in the spatial control of bismuth atoms incorporated into silicon for quantum technological applications; however, there is currently no known precursor for the incorporation of bismuth that is compatible with this STM-based lithographic method. Here, we explore the precursor chemistry (adsorption, diffusion, and dissociation) of bismuth trichloride (BiCl3) on Si(001). We show atomic-resolution STM images of BiCl3 exposed Si(001) surfaces at low coverage and combine this with density functional theory calculations to produce a model of the surface processes and the observed features. Our results show that, at room temperature, BiCl3 completely dissociates to produce bismuth ad-atoms, ad-dimers, and surface-bound chlorine, and we explain how BiCl3 is a strong candidate for a bismuth precursor compound compatible with lithographic patterning at the sub-nanometer scale

    Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Get PDF
    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered

    Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads

    Get PDF
    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered

    Durable Activated Carbon Electrodes with a Green Binder

    Get PDF
    Herein, the fabrication and electrochemical performance of thick (180−280 μm) activated carbon (AC) electrodes with carbonized lignin-derived carbon fiber (LCF) inclusions are reported. Efforts are taken in fabricating robust free-standing electrodes from an environmentally friendly binder, microfibrillated cellulose (MFC), considering the biologically hazardous nature of other commonly used binders like polytetrafluoroethylene (PTFE), n-methyl-2-pyrrolidone (NMP), and polyvinylidene fluoride (PVDF). Generally, electrodes composed of MFC binder are prone to cracking upon drying, especially with higher mass loadings, which leads to nonflexibility and poor device stability. The LCF inclusions into the AC electrode with MFC binders not only increase flexibility but also contribute to better conductivity in the electrodes. The LCFs act as an intermediate layer among AC particles and serve as conductive pathways, facilitating exposure of more active surfaces to the electrolyte. A thick electrode with high mass loading of 10 mg cm−2 is achieved. The results show that by incorporating 2 wt% LCF to the AC material, the best device with 5 mg cm−2 delivers a specific capacitance of 97 F g−1, while the specific capacitance of the reference AC device without LCF is 85 F g−1

    Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai\u27i

    Get PDF
    The 5–9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep décollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2–3 km depth in the up-rift direction toward Kīlauea’s summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea’s summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano’s magmatic system

    Adsorption and Thermal Decomposition of Triphenyl Bismuth on Silicon (001)

    Get PDF
    We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth–silicon and phenyl–silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration. The thermal decomposition of the carbon fragments leads to the formation of silicon carbide at the surface. This chemical understanding of the process allows for controlled bismuth introduction into the near surface of silicon and opens pathways for ultra-shallow doping approaches
    corecore