15,503 research outputs found
Quantum Sampling Problems, BosonSampling and Quantum Supremacy
There is a large body of evidence for the potential of greater computational
power using information carriers that are quantum mechanical over those
governed by the laws of classical mechanics. But the question of the exact
nature of the power contributed by quantum mechanics remains only partially
answered. Furthermore, there exists doubt over the practicality of achieving a
large enough quantum computation that definitively demonstrates quantum
supremacy. Recently the study of computational problems that produce samples
from probability distributions has added to both our understanding of the power
of quantum algorithms and lowered the requirements for demonstration of fast
quantum algorithms. The proposed quantum sampling problems do not require a
quantum computer capable of universal operations and also permit physically
realistic errors in their operation. This is an encouraging step towards an
experimental demonstration of quantum algorithmic supremacy. In this paper, we
will review sampling problems and the arguments that have been used to deduce
when sampling problems are hard for classical computers to simulate. Two
classes of quantum sampling problems that demonstrate the supremacy of quantum
algorithms are BosonSampling and IQP Sampling. We will present the details of
these classes and recent experimental progress towards demonstrating quantum
supremacy in BosonSampling.Comment: Survey paper first submitted for publication in October 2016. 10
pages, 4 figures, 1 tabl
Adaptive Phase Measurements in Linear Optical Quantum Computation
Photon counting induces an effective nonlinear optical phase shift on certain
states derived by linear optics from single photons. Although this no
nlinearity is nondeterministic, it is sufficient in principle to allow scalable
linear optics quantum computation (LOQC). The most obvious way to encode a
qubit optically is as a superposition of the vacuum and a single photon in one
mode -- so-called "single-rail" logic. Until now this approach was thought to
be prohibitively expensive (in resources) compared to "dual-rail" logic where a
qubit is stored by a photon across two modes. Here we attack this problem with
real-time feedback control, which can realize a quantum-limited phase
measurement on a single mode, as has been recently demonstrated experimentally.
We show that with this added measurement resource, the resource requirements
for single-rail LOQC are not substantially different from those of dual-rail
LOQC. In particular, with adaptive phase measurements an arbitrary qubit state
can be prepared deterministically
Exact Boson Sampling using Gaussian continuous variable measurements
BosonSampling is a quantum mechanical task involving Fock basis state
preparation and detection and evolution using only linear interactions. A
classical algorithm for producing samples from this quantum task cannot be
efficient unless the polynomial hierarchy of complexity classes collapses, a
situation believe to be highly implausible. We present method for constructing
a device which uses Fock state preparations, linear interactions and Gaussian
continuous-variable measurements for which one can show exact sampling would be
hard for a classical algorithm in the same way as Boson Sampling. The detection
events used from this arrangement does not allow a similar conclusion for the
classical hardness of approximate sampling to be drawn. We discuss the details
of this result outlining some specific properties that approximate sampling
hardness requires
A zonal computational procedure adapted to the optimization of two-dimensional thrust augmentor inlets
A viscous-inviscid interaction methodology based on a zonal description of the flowfield is developed as a mean of predicting the performance of two-dimensional thrust augmenting ejectors. An inviscid zone comprising the irrotational flow about the device is patched together with a viscous zone containing the turbulent mixing flow. The inviscid region is computed by a higher order panel method, while an integral method is used for the description of the viscous part. A non-linear, constrained optimization study is undertaken for the design of the inlet region. In this study, the viscous-inviscid analysis is complemented with a boundary layer calculation to account for flow separation from the walls of the inlet region. The thrust-based Reynolds number as well as the free stream velocity are shown to be important parameters in the design of a thrust augmentor inlet
Boson Sampling from Gaussian States
We pose a generalized Boson Sampling problem. Strong evidence exists that
such a problem becomes intractable on a classical computer as a function of the
number of Bosons. We describe a quantum optical processor that can solve this
problem efficiently based on Gaussian input states, a linear optical network
and non-adaptive photon counting measurements. All the elements required to
build such a processor currently exist. The demonstration of such a device
would provide the first empirical evidence that quantum computers can indeed
outperform classical computers and could lead to applications
Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection
It is shown that a linear superposition of two macroscopically
distinguishable optical coherent states can be generated using a single photon
source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with
imperfect threshold detectors are enough to generate a coherent state
superposition in a free propagating optical field with a large coherent
amplitude () and high fidelity (). In contrast to all
previous schemes to generate such a state, our scheme does not need photon
number resolving measurements nor Kerr-type nonlinear interactions.
Furthermore, it is robust to detection inefficiency and exhibits some
resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid
Communication
An inductively powered telemetry system for temperature, EKG, and activity monitoring
An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver
Modelling large motion events in fMRI studies of patients with epilepsy
EEG-correlated fMRI can provide localisation information on the generators of epileptiform discharges in patients with focal epilepsy. To increase the technique's clinical potential, it is important to consider ways of optimising the yield of each experiment while minimizing the risk of false-positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG–fMRI data acquired in 34 cases with focal epilepsy. Signal changes associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include ‘scan nulling’ regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential and that the proposed approach can be effective
- …