15,282 research outputs found

    Ballerina - Pirouettes in Search of Gamma Bursts

    Get PDF
    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.Comment: A&AS in press, proceedings of the Workshop "Gamma Ray Bursts in the Afterglow Era" in Rome, November 199

    Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection

    Get PDF
    It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (α>2\alpha>2) and high fidelity (F>0.99F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid Communication

    Production of superpositions of coherent states in traveling optical fields with inefficient photon detection

    Get PDF
    We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It non-deterministically distills coherent state superpositions (CSSs) with large amplitudes out of CSSs with small amplitudes using inefficient photon detection. The small CSSs required to produce CSSs with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single photon sources and boosts negativity of Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.

    Effective slip boundary conditions for flows over nanoscale chemical heterogeneities

    Full text link
    We study slip boundary conditions for simple fluids at surfaces with nanoscale chemical heterogeneities. Using a perturbative approach, we examine the flow of a Newtonian fluid far from a surface described by a heterogeneous Navier slip boundary condition. In the far-field, we obtain expressions for an effective slip boundary condition in certain limiting cases. These expressions are compared to numerical solutions which show they work well when applied in the appropriate limits. The implications for experimental measurements and for the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure

    Experiments with explicit filtering for LES using a finite-difference method

    Get PDF
    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Violation of Leggett-Garg inequalities in quantum measurements with variable resolution and back-action

    Full text link
    Quantum mechanics violates Leggett-Garg inequalities because the operator formalism predicts correlations between different spin components that would correspond to negative joint probabilities for the outcomes of joint measurements. However, the uncertainty principle ensures that such joint measurements cannot be implemented without errors. In a sequential measurement of the spin components, the resolution and back-action errors of the intermediate measurement can be described by random spin flips acting on an intrinsic joint probability. If the error rates are known, the intrinsic joint probability can be reconstructed from the noisy statistics of the actual measurement outcomes. In this paper, we use the spin-flip model of measurement errors to analyze experimental data on photon polarization obtained with an interferometric setup that allows us to vary the measurement strength and hence the balance between resolution and back-action errors. We confirm that the intrinsic joint probability obtained from the experimental data is independent of measurement strength and show that the same violation of the Leggett-Garg inequality can be obtained for any combination of measurement resolution and back-action.Comment: 17 pages, 7 figure

    Measurement of the branching ratio for beta-delayed alpha decay of 16N

    Get PDF
    While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be used to constrain the extrapolation of the E1 component of the S-factor; however, with this approach the resulting S-factor becomes strongly correlated with the assumed beta-alpha branching ratio. We have remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented Si detector and counting the number of beta-alpha decays relative to the number of implantations. Our result, 1.49(5)e-5, represents a 24% increase compared to the accepted value and implies an increase of 14% in the extrapolated S-factor

    The electric vehicle integration into the power system: an application to the portuguese case

    Get PDF
    Electric vehicles (EV) offer a great potential to address the integration of renewable energy sources (RES) in the power grid, and thus reduce the dependence on oil as well as the greenhouse gases (GHG) emissions. The high share of wind energy in the Portuguese energy mix expected for 2020 can led to eventual curtailment, especially during the winter when high levels of hydro generation occur. In this paper a methodology based on a unit commitment and economic dispatch is implemented, and a hydro-thermal dispatch is performed in order to evaluate the impact of the EVs integration into the grid. Results show that the considered 10 % penetration of EVs in the Portuguese fleet would increase load in 3 % and would not integrate a significant amount of wind energy because curtailment is already reduced in the absence of EVs. According to the results, the EV is charged mostly with thermal generation and the associated emissions are much higher than if they were calculated based on the generation mix

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure
    corecore