154 research outputs found
A new method to detect solar-like oscillations at very low S/N using statistical significance testing
We introduce a new method to detect solar-like oscillations in frequency
power spectra of stellar observations, under conditions of very low signal to
noise. The Moving-Windowed-Power-Search, or MWPS, searches the power spectrum
for signatures of excess power, over and above slowly varying (in frequency)
background contributions from stellar granulation and shot or instrumental
noise. We adopt a false-alarm approach (Chaplin et al. 2011) to ascertain
whether flagged excess power, which is consistent with the excess expected from
solar-like oscillations, is hard to explain by chance alone (and hence a
candidate detection).
We apply the method to solar photometry data, whose quality was
systematically degraded to test the performance of the MWPS at low
signal-to-noise ratios. We also compare the performance of the MWPS against the
frequently applied power-spectrum-of-power-spectrum (PSxPS) detection method.
The MWPS is found to outperform the PSxPS method.Comment: 10 pages, 7 figures, accepted for publication in MNRAS, Added
reference
K2P A photometry pipeline for the K2 mission
With the loss of a second reaction wheel, resulting in the inability to point
continuously and stably at the same field of view, the NASA Kepler satellite
recently entered a new mode of observation known as the K2 mission. The data
from this redesigned mission present a specific challenge; the targets
systematically drift in position on a ~6 hour time scale, inducing a
significant instrumental signal in the photometric time series --- this greatly
impacts the ability to detect planetary signals and perform asteroseismic
analysis. Here we detail our version of a reduction pipeline for K2 target
pixel data, which automatically: defines masks for all targets in a given
frame; extracts the target's flux- and position time series; corrects the time
series based on the apparent movement on the CCD (either in 1D or 2D) combined
with the correction of instrumental and/or planetary signals via the KASOC
filter (Handberg & Lund 2014), thus rendering the time series ready for
asteroseismic analysis; computes power spectra for all targets, and identifies
potential contaminations between targets. From a test of our pipeline on a
sample of targets from the K2 campaign 0, the recovery of data for multiple
targets increases the amount of potential light curves by a factor .
Our pipeline could be applied to the upcoming TESS (Ricker et al. 2014) and
PLATO 2.0 (Rauer et al. 2013) missions.Comment: 14 pages, 20 figures, Accepted for publication in The Astrophysical
Journal (Apj
Spatial incoherence of solar granulation: a global analysis using BiSON 2B data
A poor understanding of the impact of convective turbulence in the outer
layers of the Sun and Sun-like stars challenges the advance towards an improved
understanding of their internal structure and dynamics. Assessing and
calibrating these effects is therefore of great importance. Here we study the
spatial coherence of granulation noise and oscillation modes in the Sun, with
the aim of exploiting any incoherence to beat-down observed granulation noise,
hence improving the detection of low-frequency p-modes. Using data from the
BiSON 2B instrument, we assess the coherence between different atmospheric
heights and between different surface regions. We find that granulation noise
from the different atmospheric heights probed is largely incoherent; frequency
regions dominated by oscillations are almost fully coherent. We find a
randomised phase difference for the granulation noise, and a near zero
difference for the evanescent oscillations. A reduction of the incoherent
granulation noise is shown by application of the cross-spectrum.Comment: 8 pages, 7 figures, MNRAS in pres
KOI-3890: A high mass-ratio asteroseismic red-giantM-dwarf eclipsing binary undergoing heartbeat tidal interactions
KOI-3890 is a highly eccentric, 153-day period eclipsing, single-lined
spectroscopic binary system containing a red-giant star showing solar-like
oscillations alongside tidal interactions. The combination of transit
photometry, radial velocity observations, and asteroseismology have enabled the
detailed characterisation of both the red-giant primary and the M-dwarf
companion, along with the tidal interaction and the geometry of the system. The
stellar parameters of the red-giant primary are determined through the use of
asteroseismology and grid-based modelling to give a mass and radius of
and
respectively. When combined with
transit photometry the M-dwarf companion is found to have a mass and radius of
and
. Moreover, through
asteroseismology we constrain the age of the system through the red-giant
primary to be . This provides a constraint on
the age of the M-dwarf secondary, which is difficult to do for other M-dwarf
binary systems. In addition, the asteroseismic analysis yields an estimate of
the inclination angle of the rotation axis of the red-giant star of
degrees. The obliquity of the system\textemdash the
angle between the stellar rotation axis and the angle normal to the orbital
plane\textemdash is also derived to give degrees
showing that the system is consistent with alignment. We observe no radius
inflation in the M-dwarf companion when compared to current low-mass stellar
models.Comment: 11 pages, 5 figures, accepted for publication in MNRA
- …