5 research outputs found

    Safety and efficacy of the bumped kinase inhibitor BKI-1553 in pregnant sheep experimentally infected with Neospora caninum tachyzoites

    Get PDF
    Neospora caninum is one of the main causes of abortion in cattle, and recent studies have highlighted its relevance as an abortifacient in small ruminants. Vaccines or drugs for the control of neosporosis are lacking. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. We here present the pharmacokinetics, safety and efficacy of BKI-1553 in pregnant ewes and foetuses using a pregnant sheep model of N. caninum infection. BKI-1553 showed exposure in pregnant ewes with trough concentrations of approximately 4 ”M, and of 1 ”M in foetuses. Subcutaneous BKI-1553 administration increased rectal temperatures shortly after treatment, and resulted in dermal nodules triggering a slight monocytosis after repeated doses at short intervals. BKI-1553 treatment decreased fever in infected pregnant ewes already after two applications, resulted in a 37–50% reduction in foetal mortality, and modulated immune responses; IFNÂż levels were increased early after infection and IgG levels were reduced subsequently. N. caninum was abundantly found in placental tissues; however, parasite detection in foetal brain tissue decreased from 94% in the infected/untreated group to 69–71% in the treated groups. In summary, BKI-1553 confers partial protection against abortion in a ruminant experimental model of N. caninum infection during pregnancy. In addition, reduced parasite detection, parasite load and lesions in foetal brains were observed

    Primary resistance to integrase strand-transfer inhibitors in Europe

    No full text
    Objectives: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. Methods: This was a multicentre, cross-sectional study within the European SPREAD HIV resistance surveillance programme. A representative set of 300 samples was selected from 1950 naive HIV-positive subjects newly diagnosed in 2006-07. The prevalence of InSTI resistance was evaluated using quality-controlled baseline population sequencing of integrase. Signature raltegravir, elvitegravir and dolutegravir resistance mutations were defined according to the IAS-USA 2014 list. In addition, all integrase substitutions relative to HXB2 were identified, including those with a Stanford HIVdb score=10 to at least one InSTI. To rule out circulation of minority InSTIresistant HIV, 65 samples were selected for 454 integrase sequencing. Results: For the population sequencing analysis, 278 samples were retrieved and successfully analysed. No signature resistance mutations to any of the InSTIswere detected. Eleven (4%) subjects hadmutations at resistance-associated positions with an HIVdb score =10. Of the 56 samples successfully analysed with 454 sequencing, no InSTI signature mutationsweredetected, whereas integrase substitutionswithanHIVdbscore=10were found in8(14.3%) individuals. Conclusions:No signature InSTI-resistant variantswere circulating in Europe before the introduction of InSTIs. However, polymorphisms contributing to InSTI resistancewere not rare. As InSTI use becomes more widespread, continuous surveillance of primary InSTI resistance is warranted. These data will be key to modelling the kinetics of InSTI resistance transmission in Europe in the coming years. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved
    corecore