10 research outputs found

    Paradise Lost and the Poetics of Encyclopedism

    Get PDF
    Table S4. Identified proteins in seminal plasma of infertile men with High ROS level

    <i>In silico</i> analysis of candidate proteins sharing homology with <i>Streptococcus agalactiae</i> proteins and their role in male infertility

    No full text
    <p>Leukocytospermia is a physiologic condition defined as human semen with a leukocyte count of >1 x 10<sup>6</sup> cells/ml that is often correlated with male infertility. Moreover, bacteriospermia has been associated with leukocytospermia ultimately leading to male infertility. We have found that semen samples with >1 x 10<sup>6</sup>/ml leukocytes and/or bacteriospermia have oxidative predominance as evidenced by augmented protein carbonyl and lipid peroxidation status of the semen which is implicated in sperm dysfunction. It has been reported that <i>Streptococcus agalactiae</i> is present in bacteriospermic samples. Previous research has shown that human leukocyte antigen beta chain paralog (HLA-DRB) alleles interact best with the infected sperm cells rather than the non-infected cells. Little is known about the interaction of major histocompatibility complex (MHC) present on leukocytes with the sperm upon bacterial infection and how it induces an immunological response which we have addressed by epitope mapping. Therefore, we examined MHC class II derived bacterial peptides which might have human sperm-related functional aspects. Twenty-two <i>S. agalactiae</i> proteins were obtained from PUBMED protein database for our study. Protein sequences with more than two accession numbers were aligned using CLUSTAL Omega to check their conservation pattern. Each protein sequence was then analyzed for T-cell epitope prediction against HLA-DRB alleles using the immune epitope database (IEDB) analysis tool. Out of a plethora of peptides obtained from this analysis, peptides corresponding to proteins of interest such as DNA binding response regulator, hyaluronate lyase and laminin binding protein were screened against the human proteome using Blastp. Interestingly, we have found bacterial peptides sharing homology with human peptides deciphering some of the important sperm functions. Antibodies raised against these probable bacterial antigens of fertility will not only help us understand the mechanism of leukocytospermia/bacteriospermia induced male factor infertility but also open new avenues for immunocontraception.</p> <p><b>Abbreviations</b>: AA: amino acid; ASA: antisperm antibodies; GBS: group B streptococcus; HLA: human leukocyte antigen; HAS3: hyaluronan synthase 3: IEDB: immune epitope database; MAPO2: O<sup>6</sup>–methylguanine–induced apoptosis 2; MHC: major histocompatibility complex; ROS: reactive oxygen species; Rosbin1: round spermatid basic protein 1; <i>S. agalactiae: Streptococcus agalactiae;</i>SA: sperm antigen; SPATA17: spermatogenesis associated protein17; SPNR: spermatid perinuclear RNA binding protein; TEX15: testis-expressed sequence 15 protein; TOPAZ: testis– and ovary-specific PAZ domain–containing protein; TPABP: testis-specific poly–A binding protein; TPAP: testis–specific poly(A) polymerase; WHO: World Health Organization</p

    Additional file 1: of Low H2O2 and enhanced oxidative resistance in the diapause-destined pupa of silkworm, Antheraea mylitta (Lepidoptera:Saturniidae) suggest their possible involvement in dormancy and lifespan extension

    No full text
    Representative excel data sheet for the respective figures. Data for each figure in the excel sheet provides the individual value, mean value, standard deviation (STDEV) and standard error of mean (SEM) for the measured parameters. Each figure is drawn based on the mean data and standard error of mean. (XLS 38 kb

    Table1_TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure.docx

    No full text
    Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.</p

    DataSheet1_TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure.docx

    No full text
    Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.</p

    Image2_TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure.tif

    No full text
    Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.</p

    Image1_TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure.tif

    No full text
    Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.</p

    Table2_TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure.docx

    No full text
    Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.</p
    corecore