2 research outputs found

    Role Of Inos-no-cgmp Signaling In Modulation Of Inflammatory And Myelination Processes

    No full text
    Nitric oxide (NO) is the main activator of the soluble guanylate cyclase (sGC)-guanosine 3'5' cyclic monophosphate (cGMP) pathway. The level of cGMP is regulated by phosphodiesterases (PDEs), which break down cGMP. It has been reported that levels of NO in the central nervous system (CNS) can greatly increase during demyelination and/or neuroinflammation. Controversially, in demyelination models, mice without iNOS may develop more severe cases of disease. Furthermore, cGMP accumulation caused by PDE inhibitors has an anti-inflammatory/neuroprotective effect in MS-models. The role of the NO-cGMP pathway in the nervous tissue is, therefore, complex and not fully understood. The aim of the present study was to contribute to existing knowledge of the role of this pathway in the CNS. Wild type (WT - C57BL/6) and iNOS-/- animals were treated with sildenafil (25mg/kg) for 8 weeks. Control animals were not treated. VCAM and ICAM (adhesion proteins), GFAP and Iba-1 (astrocyte and microglia markers, respectively), PKG (cGMP-dependent protein kinase), sGC, eNOS (constitutive endothelial NO sinthase) and GSTpi (a marker of mature oligodendrocytes) were evaluated in the cerebellum using immunohistochemistry or western blotting. Myelin was assessed by luxol fast blue staining and electron transmission microscopy. Treatment with sildenafil reduced ICAM and VCAM levels (anti-inflammatory effect) and increased GFAP and Iba-1 expression (clearance phenotype) in WT animals. The expression of VCAM, ICAM, GFAP, PKG and sGC was lower in iNOS-/- mice than in WT control animals. The treatment of iNOS-/- animals with sildenafil resulted in an increase of all proteins (pro-inflammatory effect). There was overexpression of eNOS in untreated iNOS-/- mice. The myelin structure of iNOS-/- animals was damaged in comparison with WT control. Sildenafil increased GSTpi and resulted in an improved myelin structure in iNOS-/- mice. In conclusion, NO-cGMP signaling plays a role in the regulation of inflammation and myelination processes. The accumulation of cGMP produced opposite effects in WT and iNOS-/- mice. This can be explained by the overexpression of eNOS in iNOS-/- mice, unbalancing cGMP signaling, or cGMP has a dual role in inflammation. Drugs that modulate the NO-sGC-cGMP pathway may be clinically beneficial in the treatment of neuroinflammatory/demyelinating disorders, but further studies of the regulation of this pathway are required. © 2014 Elsevier Inc.1046073Agullo, L., Baltrons, M.A., Garcia, A., Calcium-dependent nitric oxide formation in glial cells (1995) Brain Res., 686, pp. 160-168Arnett, H.A., Hellendall, R.P., Matsushima, G.K., Suzuki, K., Laubach, V.E., Sherman, P., Ting, J.P., The protective role of nitric oxide in a neurotoxicant-induced demyelinating model (2002) J. Immunol., 168, pp. 427-433Baratti, C.M., Boccia, M.M., Effects of sildenafil on long-term retention of an inhibitory avoidance response in mice (1999) Behav. Pharmacol., 10, pp. 731-737Bellamy, T.C., Garthwaite, J., Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells (2001) J. Biol. Chem., 276, pp. 4287-4292Benjamins, J.A., Nedelkoska, L., Cyclic GMP-dependent pathways protect differentiated oligodendrocytes from multiple types of injury (2007) Neurochem. Res., 32, pp. 321-329Borán, M.S., García, A., The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes (2007) J. Neurochem., 102, pp. 216-230Borán, M.S., Baltrons, M.A., García, A., The ANP-cGMP-protein kinase G pathway a phagocytic phenotype but decreases inflammatory gene expression in microglial cells (2008) Glia, 56, pp. 394-411Danilov, A.I., Andersson, M., Bavand, N., Wiklund, N.P., Olsson, T., Brundin, L., Nitric oxide metabolite determinations reveal continuous inflammation in multiple sclerosis (2003) J. Neuroimmunol., 136, pp. 112-118De Luca, G., Di Giorgio, R.M., Macaione, S., Calpona, P.R., Di Paola, E.D., Costa, N., Cuzzocrea, S., De Sarro, G., Amino acid levels in some brain areas of inducible nitric oxide synthase knockout mouse (iNOS-/-) before and after pentylenetetrazole kindling (2006) Pharmacol. Biochem. Behav., 85, pp. 804-812Derbyshire, E.R., Marletta, M.A., Biochemistry of soluble guanylate cyclase (2009) Handb. Exp. Pharmacol., 191, pp. 17-31Fenyk-Melody, J.E., Garrison, A.E., Brunnert, S.R., Weidner, J.R., Shen, F., Shelton, B.A., Mudgett, J.S., Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene (1998) J. Immunol., 160, pp. 2940-2946Forshammar, J., Block, L., Lundborg, C., Biber, B., Hansson, E., Naloxone and ouabain in ultralow concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes (2011) J. Biol. Chem., 286, pp. 31586-31597Forshammar, J., Jörneberg, P., Biörklund, U., Westerlund, A., Lundborg, C., Biber, B., Hansson, E., Anti-inflammatory substances can influence some glial cell types but not others: cytokine release from microglia (2013) Brain Res., , (in press)Frank-Cannon, T.C., Alto, L.T., McAlpine, F.E., Tansey, M.G., Does neuroinflammation fan the flame in neurodegenerative diseases? (2009) Mol. Neurodegener., 4, p. 47Gay, F.W., Drye, T.J., Dick, G.W., Esiri, M.M., The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion (1997) Brain, 120, pp. 1461-1483Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Anal. Biochem., 126, pp. 131-138Greenwood, J., Etienne-Manneville, S., Adamson, P., Couraud, P.O., Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier (2002) Vascul. Pharmacol., 38, pp. 315-322Huang, P.L., Mouse models of nitric oxide synthase deficiency (2000) J Am Soc Nephrol, 11, pp. S120-S123Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H., Fishman, M.C., Targeted disruption of the neuronal nitric oxide synthase gene (1993) Cell, 75, pp. 1273-1286Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., Fishman, M.C., Hypertension in mice lacking the gene for endothelial nitric oxide synthase (1995) Nature (Lond), 377, pp. 239-242Kahl, K.G., Zielased, J., Uttenthal, L.O., Rodrigo, J., Toyka, K.V., Schmidt, H.H., Protective role of the cytokine-inducible isoform of nitric oxide synthase induction and nitrosative stress in experimental autoimmune encephalomyelitis of the DA rat (2003) J. Neurosci. Res., 73, pp. 198-205Ke, X., Terashima, M., Nariai, Y., Nakashima, Y., Nabika, T., Tanigawa, Y., Nitric oxide regulates actin reorganization through cGMP and Ca(2+)/calmodulin in RAW 264.7 cells (2001) Biochim. Biophys. Acta, 1539, pp. 101-113Klotz, L., Diehl, L., Dani, I., Neumann, H., von Oppen, N., Dolf, A., Endl, E., Knolle, P., Brain endothelial PPARgamma controls inflammation-induced CD4+ T cell adhesion and transmigration in vitro (2007) J. Neuroimmunol., 190, pp. 34-43Kyritsis, N., Kizil, C., Brand, M., Neuroinflammation and central nervous system regeneration in vertebrates (2014) Trends Cell Biol., 24, pp. 128-135Lartey, F.M., Ahn, G.O., Shen, B., Cord, K.T., Smith, T., Chua, J.Y., Rosenblum, S., Loo, B.W., PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06 (2014) Mol. Imaging Biol., 16, pp. 109-117Laubach, V.E., Shesely, E.G., Smithies, O., Sherman, P.A., Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death (1995) Proc. Natl. Acad. Sci. U S A, 92, pp. 10688-10692Lee, S.J., Benveniste, E.N., Adhesion molecule expression and regulation on cells of the central nervous system (1999) J. Neuroimmunol., 98, pp. 77-88Lieb, K., Engels, S., Fiebich, B.L., Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells (2003) Neurochem. Int., 42, pp. 131-137MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trumbauer, M., Stevens, K., Mudgett, T.S., Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase (1995) Cell, 81, pp. 641-650Manson, S.C., Burke, G., Voets, N., Palace, J., Matthews, P.M., Effect of sildenafil citrate on CBF and BOLD activation in multiple sclerosis patients (2005) 21st congress of the European Committee for the Treatment and Research in Multiple SclerosisPoster No. 237 Thessaloniki, GreeceMcCarthy, K.D., de Vellis, J., Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue (1980) J. Cell Biol., 85, pp. 890-902Mc Guire, C., Prinz, M., Beyaert, R., van Loo, G., Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology (2013) Trends Mol. Med., 19, pp. 604-613Mrak, R.E., Griffin, W.S., Glia and their cytokines in progression of neurodegeneration (2005) Neurobiol. Aging, 26, pp. 349-354Murthy, K.S., Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle (2001) Biochem. J., 360, pp. 199-208Nossaman, B.D., Kadowitz, P.J., Stimulators of soluble guanylyl cyclase: future clinical indications (2013) Ochsner J., 13, pp. 147-156Nunes, A.K., Raposo, C., Luna, R.L., Cruz-Höfling, M.A., Peixoto, C.A., Sildenafil (Viagra®) down regulates cytokines and prevents demyelination in a cuprizone-induced MS mouse model (2012) Cytokine, 60, pp. 540-551Papapetropoulos, A., Abou-Mohamed, G., Marczin, N., Murad, F., Caldwell, R.W., Catravas, J.D., Downregulation of nitrovasodilator-induced cyclic GMP accumulation in cells exposed to endotoxin or interleukin-1 beta (1996) Br. J. Pharmacol., 118, pp. 1359-1366Pifarre, P., Prado, J., Baltrons, M.A., Giralt, M., Gabarro, P., Feinstein, D.L., Hidalgo, J., Garcia, A., Sildenafil (Viagra) ameliorates clinical symptoms and neuropathology in a mouse model of multiple sclerosis (2011) Acta Neuropathol., 121, pp. 499-508Prickaerts, J., van Staveren, W.C., Sik, A., Markerink-van Ittersum, M., Niewöhner, U., van der Staay, F.J., Blokland, A., de Vente, J., Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat (2002) Neuroscience, 113, pp. 351-361Puzzo, D., Privitera, L., Leznik, E., Fà, M., Staniszewski, A., Palmeri, A., Arancio, O., Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus (2008) J. Neurosci., 28, pp. 14537-14545Pyriochou, A., Papapetropoulos, A., Soluble guanylyl cyclase: more secrets revealed (2005) Cell. Signal., 17, pp. 407-413Ramesh, G., Maclean, A.G., Philipp, M.T., Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain (2013) Mediators Inflamm., 2013, p. 480739Raposo, C., Nunes, A.K., Luna, R.L., Araújo, S.M., Cruz-Höfling, M.A., Peixoto, C.A., Sildenafil (Viagra) protective effects on neuroinflammation: the role of iNOS/NO system in an inflammatory demyelination model (2013) Mediators Inflamm., 2013, p. 321460RapÔso, C., Odorissi, P.A.M., Oliveira, A.L.R., Aoyama, H., Ferreira, C.V., Verinaud, L., Fontana, K., Cruz-Höfling, M.A., Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier (2012) Neurochem. Res., 37, pp. 1967-1981Riccitelli, G., Rocca, M.A., Pagani, E., Martinelli, V., Radaelli, M., Fajini, A., Comi, G., Filippi, M., Mapping regional grey and white matter atrophy in relapsing-remitting multiple sclerosis (2012) MultScler, 18, pp. 1027-1037Ruuls, S.R., Van der Linder, S., Sontrop, K., Huitinga, I., Dijkstra, C.D., Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors (1996) Clin. Exp. Immunol., 103, pp. 467-474Saraiva, K.L., Silva, A.K., Wanderley, M.I., De Araújo, A.A., De Souza, J.R., Peixoto, C.A., Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion (2009) Int. J. Exp. Pathol., 90, pp. 454-462Shields, S.D., Cheng, X., Gasser, A., Saab, C.Y., Tyrrell, L., Eastman, E.M., A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis (2012) Ann. Neurol., 71, pp. 186-194Shimouchi, A., Janssens, S.P., Bloch, D.B., Zapol, W.M., Bloch, K.D., CAMP regulates soluble guanylate cyclase beta 1-subunit gene expression in RFL-6 rat fetal lung fibroblasts (1993) Am. J. Physiol., 265, pp. L456-L461Tsutsui, M., Shimokawa, H., Morishita, T., Nakata, S., Sabanai, K., Nakashima, Y., Yanagihara, N., Development of genetically engineered mice lacking all three nitric oxide synthase isoforms (2007) Yakugaku Zasshi, 127, pp. 1347-1355Vollmar, A.M., Förster, R., Schulz, R., Effects of atrial natriuretic peptide on phagocytosis and respiratory burst in murine macrophages (1997) Eur. J. Pharmacol., 319, pp. 279-285Vollmar, A.M., The role of atrial natriuretic peptide in the immune system (2005) Peptides, 26, pp. 1086-1094Wakita, H., Tomimoto, H., Akiguchi, I., Lin, J.X., Ihara, M., Ohtani, R., Shibata, M., Ibudilast protect against white matter damage under chronic cerebral hypoperfusion in the rat (2003) Brain Res., 992, pp. 53-59Wang, L., Chopp, M., Szalad, A., Liu, Z., Bolz, M., Alvarez, F.M., Lu, M., Zhang, Z.G., Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice (2011) Neuroscience, 193, pp. 399-410Wang, X., Robinson, P.J., Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system (1997) J. Neurochem., 68, pp. 443-456Wei, X.Q., Charles, I.G., Smith, A., Ure, J., Feng, G.J., Huang, F.P., Xu, D., Liew, F.Y., Altered immune responses in mice lacking inducible nitric oxide synthase (1995) Nature (Lond), 375, pp. 408-411Williams, K.C., Hickey, W.F., Traffic of hematogenous cells through the central nervous system (1995) Curr. Top. Microbiol. Immunol., 202, pp. 221-245Woodcock, T., Morganti-Kossmann, M.C., The role of markers of inflammation in traumatic brain injury (2013) Front. Neurol., 4, p. 18Xia, X., Xu, Z., Hu, X., Wu, C., Dai, Y., Yang, L., Impaired iNOS-sGC-cGMP signaling contributes to chronic hypoxic and hypercapnic pulmonary hypertension in rat (2012) Cell Biochem. Funct., 30, pp. 279-285Yoshioka, A., Yamaya, Y., Saiki, S., Kanemoto, M., Hirose, G., Pleasure, D., Cyclic GMP/cyclic GMP-dependent protein kinase system prevents excitotoxicity in an immortalized oligodendroglial cell line (2000) J. Neurochem., 74, pp. 633-640Yoshioka, Y., Takeda, N., Yamamuro, A., Atsushi, K., Maeda, S., Nitric oxide inhibits lipopolysaccharide-induced inducible nitric oxide synthase expression and its own production through the cGMP signaling pathway in murine microglia BV-2 cells (2010) J. Pharmacol. Sci., 113, pp. 153-160Zhao, L., Mason, N.A., Strange, J.W., Walker, H., Wilkins, M.R., Beneficial effects of phosphodiesterase 5 inhibitor in pulmonary hypertension are influenced by natriuretic peptide activity (2003) Circulation, 107, pp. 234-23

    Sildenafil (viagra) Protective Effects On Neuroinflammation: The Role Of Inos/no System In An Inflammatory Demyelination Model

    No full text
    We recently demonstrated that sildenafil reduces the expression of cytokines, COX-2, and GFAP in a demyelinating model induced in wild-type (WT) mice. Herein, the understandings of the neuroprotective effect of sildenafil and the mediation of iNOS/NO system on inflammatory demyelination induced by cuprizone were investigated. The cerebella of iNOS-/- mice were examined after four weeks of treatment with cuprizone alone or combined with sildenafil. Cuprizone increased GFAP, Iba-1, TNF-α, COX-2, IL-1β, and IFN-γ expression, decreased expression of glutathione S-transferase pi (GSTpi), and damaged myelin in iNOS-/- mice. Sildenafil reduced Iba-1, IFN-γ, and IL-1β levels but had no effect on the expression of GFAP, TNF-α, and COX-2 compared to the cuprizone group. Sildenafil elevated GSTpi levels and improved the myelin structure/ultrastructure. iNOS-/- mice suffered from severe inflammation following treatment with cuprizone, while WT mice had milder inflammation, as found in the previous study. It is possible that inflammatory regulation through iNOS-feedback is absent in iNOS-/- mice, making them more susceptible to inflammation. Sildenafil has at least a partial anti-inflammatory effect through iNOS inhibition, as its effect on iNOS-/- mice was limited. Further studies are required to explain the underlying mechanism of the sildenafil effects. © 2013 Catarina Raposo et al.2013Nathan, C., Xie, Q.-W., Nitric oxide synthases: Roles, tolls, and controls (1994) Cell, 78 (6), pp. 915-918. , DOI 10.1016/0092-8674(94)90266-6Nathan, C., Xie, Q.-W., Regulation of biosynthesis of nitric oxide (1994) Journal of Biological Chemistry, 269 (19), pp. 13725-13728Palmer, A.C., Calder, I.M., Hughes, J.T., Spinal cord degeneration in divers (1987) Lancet, 2 (8572), pp. 1365-1366Garthwaite, G., Garthwaite, J., Cyclic GMP and cell death in rat cerebellar slices (1988) Neuroscience, 26 (1), pp. 321-326. , 2-s2.0-0023816358Knowles, R.G., Palacios, M., Palmer, R.M.J., Moncada, S., Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase (1989) Proceedings of the National Academy of Sciences of the United States of America, 86 (13), pp. 5159-5162Hibbs Jr., J.B., Taintor, R.R., Vavrin, Z., Rachlin, E.M., Nitric oxide: A cytotoxic activated macrophage effector molecule (1988) Biochemical and Biophysical Research Communications, 157 (1), pp. 87-94. , DOI 10.1016/S0006-291X(88)80015-9Stuehr, D.J., Nathan, C.F., Nitric oxide: A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells (1989) Journal of Experimental Medicine, 169 (5), pp. 1543-1555. , DOI 10.1084/jem.169.5.1543Esplugues, J.V., NO as a signalling molecule in the nervous system (2002) British Journal of Pharmacology, 135 (5), pp. 1079-1095Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, Jr.L., Baron, P., Villalba, M., Ferrari, D., Rossi, F., Activation of microglial cells by β -amyloid protein and interferon- γ (1995) Nature, 374 (6523), pp. 647-650. , 2-s2.0-0028953529Prickaerts, J., Van Staveren, W.C.G., Ik, A., Markerink-van Ittersum, M., Niewohner, U., Van Der Staay, F.J., Blokland, A., De Vente, J., Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat (2002) Neuroscience, 113 (2), pp. 351-361. , DOI 10.1016/S0306-4522(02)00199-9, PII S0306452202001999McGeer, E.G., McGeer, P.L., The role of anti-inflammatory agents in Parkinson's disease (2007) CNS Drugs, 21 (10), pp. 789-797. , http://cnsdrugs.adisonline.com/pt/re/cns/pdfhandler.00023210-200721100- 00001.pdf;jsessionid=GxKBmQ3slsB2CCHsj3jsbyR1vJpcJgTBvLQvXhVnFXpkLnnRn1dK!- 1754492629!181195629!8091!-1, DOI 10.2165/00023210-200721100-00001Rosenberg, G.A., Neurological diseases in relation to the blood-brain barrier (2012) Journal of Cerebral Blood Flow & Metabolism, 32, pp. 1139-1151Willenborg, D.O., Staykova, M., Fordham, S., O'Brien, N., Linares, D., The contribution of nitric oxide and interferon gamma to the regulation of the neuro-inflammation in experimental autoimmune encephalomyelitis (2007) Journal of Neuroimmunology, 191 (1-2), pp. 16-25. , DOI 10.1016/j.jneuroim.2007.09.007, PII S0165572807003116, Regulation of NeuroinflammationSahrbacher, U.C., Lechner, F., Eugster, H.P., Frei, K., Lassmann, H., Fontana, A., Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis (1998) European Journal of Immunology, 28 (4), pp. 1332-1338. , 2-s2.0-0032041760Arnett, H.A., Hellendall, R.P., Matsushima, G.K., Suzuki, K., Laubach, V.E., Sherman, P., Ting, J.P.-Y., The protective role of nitric oxide in a neurotoxicant-induced demyelinating model (2002) Journal of Immunology, 168 (1), pp. 427-433Bender, A.T., Beavo, J.A., Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages (2004) Neurochemistry International, 45 (6), pp. 853-857. , DOI 10.1016/j.neuint.2004.03.015, PII S0197018604000634Schlossmann, J., Hofmann, F., CGMP-dependent protein kinases in drug discovery (2005) Drug Discovery Today, 10 (9), pp. 627-634. , DOI 10.1016/S1359-6446(05)03406-9, PII S1359644605034069Kipp, M., Clarner, T., Gingele, S., Pott, F., Amor, S., Van Der Valk, P., Beyer, C., Brain lipid binding protein (FABP7) as modulator of astrocyte function (2011) Physiological Research, 60, pp. S49-S60. , supplement 1 2-s2.0-84856617583Palmeri, A., Privitera, L., Giunta, S., Loreto, C., Puzzo, D., Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory (2013) Behavioural Brain Research, 240, pp. 11-20Zhang, L., Yu, W., Schroedter, I., Kong, J., Vrontakis, M., Galanin transgenic mice with elevated circulating galanin levels alleviate demyelination in a cuprizone-induced ms mouse model (2012) PLoS ONE, 7 (3 ARTICLE E33901). , 2-s2.0-84858674829 10.1371/journal.pone.0033901Pifarre, P., Prado, J., Baltrons, M.A., Giralt, M., Gabarro, P., Feinstein, D.L., Hidalgo, J., Garcia, A., Sildenafil (Viagra) ameliorates clinical symptoms and neuropathology in a mouse model of multiple sclerosis (2011) Acta Neuropathologica, 121 (4), pp. 499-508. , 2-s2.0-79954610434 10.1007/s00401-010-0795-6Nunes, A.K.S., Rapôso, C., Luna, R.L., Cruz-Höfling, M.A., Peixoto, C.A., Sildenafil (Viagra) down regulates cytokines and prevents demyelination in a cuprizone-induced MS mouse model (2012) Cytokine, 60, pp. 540-551Zhao, L., Mason, N.A., Strange, J.W., Walker, H., Wilkins, M.R., Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic peptide activity (2003) Circulation, 107 (2), pp. 234-237. , DOI 10.1161/01.CIR.0000050653.10758.6BSaraiva, K.L.A., Silva, A.K., Wanderley, M.I., De Araújo, A.A., De Souza, J.R., Peixoto, C.A., Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion (2009) International Journal of Experimental Pathology, 90 (4), pp. 454-462. , 2-s2.0-68849086811 10.1111/j.1365-2613.2009.00660.xMoharregh-Khiabani, D., Blank, A., Skripuletz, T., Miller, E., Kotsiari, A., Gudi, V., Stangel, M., Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse (2010) PLoS ONE, 5 (7 ARTICLE E11769). , 2-s2.0-77955478688 10.1371/journal.pone.0011769Gao, Z., Tsirka, S.E., Animal Models of MS reveal multiple roles of microglia in disease pathogenesis (2011) Neurology Research International, 2011, p. 9. , 383087 10.1155/2011/383087Silvestroff, L., Bartucci, S., Pasquini, J., Franco, P., Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination (2012) Experimental Neurology, 235 (1), pp. 357-367. , 2-s2.0-84859914779 10.1016/j.expneurol.2012.02.018Riccitelli, G., Rocca, M.A., Pagani, E., Mapping regional grey and white matter atrophy in relapsing-remitting multiple sclerosis (2012) Multiple Sclerosis, 18 (7), pp. 1027-1037. , 10.1177/1352458512439239Shields, S.D., Cheng, X., Gasser, A., Saab, C.Y., Tyrrell, L., Eastman, E.M., Iwata, M., Waxman, S.G., A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis (2012) Annals of Neurology, 71 (2), pp. 186-194. , 2-s2.0-84857606247 10.1002/ana.22665Bernardini, C., Greco, F., Zannoni, A., Bacci, M.L., Seren, E., Forni, M., Differential expression of nitric oxide synthases in porcine aortic endothelial cells during LPS-induced apoptosis (2012) The Journal of Inflammation, 9, p. 47Chang, W.-L., Chung, C.-H., Wu, Y.-C., Su, M.-J., The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway (2004) Nitric Oxide - Biology and Chemistry, 11 (4), pp. 307-315. , DOI 10.1016/j.niox.2004.10.004, PII S1089860304001454Pérez-Sala, D., Cernuda-Morollón, E., Díaz-Cazorla, M., Rodríguez-Pascual, F., Lamas, S., Posttranscriptional regulation of human iNOS by the NO/cGMP pathway (2001) American Journal of Physiology, 280, pp. 466-473Datta, P.K., Dhupar, S., Lianos, E.A., Regulatory effects of inducible nitric oxide synthase on cyclooxygenase-2 and heme oxygenase-1 expression in experimental glomerulonephritis (2006) Nephrology Dialysis Transplantation, 21 (1), pp. 51-57. , DOI 10.1093/ndt/gfi135Beg, A.A., Baltimore, D., An essential role for NF-κB in preventing TNF-α-induced cell death (1996) Science, 274 (5288), pp. 782-784. , DOI 10.1126/science.274.5288.782Chanthaphavong, R.S., Loughran, P.A., Lee, T.Y., Scott, M.J., Billiar, T.R., A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α -converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes (2012) Journal of Biological Chemistry, 287, pp. 35887-35898Beg, A.A., Baltimore, D., An essential role for NF-κB in preventing TNF-α-induced cell death (1996) Science, 274 (5288), pp. 782-784. , DOI 10.1126/science.274.5288.782Bénardais, K., Kotsiari, A., Skuljec, J., Cuprizone [bis(cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes (2013) Neurotoxicity Research, 24 (2), pp. 244-250Benjamins, J.A., Nedelkoska, L., Cyclic GMP-dependent pathways protect differentiated oligodendrocytes from multiple types of injury (2007) Neurochemical Research, 32 (2), pp. 321-329. , DOI 10.1007/s11064-006-9187-
    corecore