13,445 research outputs found
Gendered Differences in Adolescent Body Image: Youth Agency, Protective andRisk Factors
This research examined youth agency and the micro-meso system environments (protective and risks) as they shaped adolescents’ body image. National data from 11,531 students (Grades 5-10) in the Health Behavior in School Aged Children survey (2009-2010) and commentaries from six education/health professionals were used. As predicted by the Iowa and Chicago Schools of Self Concept, parental figure protected youth against negative body image by shielding them against school bullying. But, the protection and risks associated with youth agency and the micro-meso systems were gendered and operated differently for male and female youth. Female negative body image models were more complex in the salience of protective and risk factors than male models. These findings added to the literature on adolescent health and endorsed the need for wrap-around role modeling and protection for adolescents
Transverse oscillations of a multi-stranded loop
We investigate the transverse oscillations of a line-tied multi-stranded
coronal loop composed of several parallel cylindrical strands. First, the
collective fast normal modes of the loop are found with the T-matrix theory.
There is a huge quantity of normal modes with very different frequencies and a
complex structure of the associated magnetic pressure perturbation and velocity
field. The modes can be classified as bottom, middle, and top according to
their frequencies and spatial structure. Second, the temporal evolution of the
velocity and magnetic pressure perturbation after an initial disturbance are
analyzed. We find complex motions of the strands. The frequency analysis
reveals that these motions are a combination of low and high frequency modes.
The complexity of the strand motions produces a strong modulation of the whole
tube movement. We conclude that the presumed internal fine structure of a loop
influences its transverse oscillations and so its transverse dynamics cannot be
properly described by those of an equivalent monolithic loop.Comment: Accepted in Ap
Role of resonances in rho^0 -> pi^+ pi^- gamma
We study the effect of the sigma(600) and a_1(1260) resonances in the rho^0
-> pi^+ pi^- gamma decay, within the meson dominance model. Major effects are
driven by the mass and width parameters of the sigma(600), and the usually
neglected contribution of the a_1(1260), although small by itself, may become
sizable through its interference with pion bremsstrahlung, and the proper
relative sign can favor the central value of the experimental branching ratio.
We present a procedure, using the gauge invariant structure of the resonant
amplitudes, to kinematically enhance the resonant effects in the angular and
energy distribution of the photon. We also elaborate on the coupling constants
involved.Comment: 5 pages, 5 figures, accepted for publication in PR
Transverse oscillations of systems of coronal loops
We study the collective kinklike normal modes of a system of several
cylindrical loops using the T-matrix theory. Loops that have similar kink
frequencies oscillate collectively with a frequency which is slightly different
from that of the individual kink mode. On the other hand, if the kink frequency
of a loop is different from that of the others, it oscillates individually with
its own frequency. Since the individual kink frequency depends on the loop
density but not on its radius for typical 1 MK coronal loops, a coupling
between kink oscillations of neighboring loops take place when they have
similar densities. The relevance of these results in the interpretation of the
oscillations studied by \citet{schrijver2000} and \citet{verwichte2004}, in
which transverse collective loop oscillations seem to be detected, is
discussed. In the first case, two loops oscillating in antiphase are observed;
interpreting this motion as a collective kink mode suggests that their
densities are roughly equal. In the second case, there are almost three groups
of tubes that oscillate with similar periods and therefore their dynamics can
be collective, which again seems to indicate that the loops of each group share
a similar density. All the other loops seem to oscillate individually and their
densities can be different from the rest
Transverse oscillations of two coronal loops
We study transverse fast magnetohydrodynamic waves in a system of two coronal
loops modeled as smoothed, dense plasma cylinders in a uniform magnetic field.
The collective oscillatory properties of the system due to the interaction
between the individual loops are investigated from two points of view. Firstly,
the frequency and spatial structure of the normal modes are studied. The system
supports four trapped normal modes in which the loops move rigidly in the
transverse direction. The direction of the motions is either parallel or
perpendicular to the plane containing the axes of the loops. Two of these modes
correspond to oscillations of the loops in phase, while in the other two they
move in antiphase. Thus, these solutions are the generalization of the kink
mode of a single cylinder to the double cylinder case. Secondly, we analyze the
time-dependent problem of the excitation of the pair of tubes. We find that
depending on the shape and location of the initial disturbance, different
normal modes can be excited. The frequencies of normal modes are accurately
recovered from the numerical simulations. In some cases, because of the
simultaneous excitation of several eigenmodes, the system shows beating and the
phase lag between the loops is .Comment: Accepted for publication in The Astrophysical Journa
- …