3,283 research outputs found
A Unified Elementary Approach to the Dyson, Morris, Aomoto, and Forrester Constant Term Identities
We introduce an elementary method to give unified proofs of the Dyson,
Morris, and Aomoto identities for constant terms of Laurent polynomials. These
identities can be expressed as equalities of polynomials and thus can be proved
by verifying them for sufficiently many values, usually at negative integers
where they vanish. Our method also proves some special cases of the Forrester
conjecture.Comment: 20 page
Vortices in Superfluid Fermi Gases through the BEC to BCS Crossover
We have analyzed a single vortex at T=0 in a 3D superfluid atomic Fermi gas
across a Feshbach resonance. On the BCS side, the order parameter varies on two
scales: and the coherence length , while only variation on
the scale of is seen away from the BCS limit. The circulating current has
a peak value which is a non-monotonic function of
implying a maximum critical velocity at unitarity. The number of
fermionic bound states in the core decreases as we move from the BCS to BEC
regime. Remarkably, a bound state branch persists even on the BEC side
reflecting the composite nature of bosonic molecules.Comment: 4 Pages, 4 Figure
Universal velocity distributions in an experimental granular fluid
We present experimental results on the velocity statistics of a uniformly
heated granular fluid, in a quasi-2D configuration. We find the base state, as
measured by the single particle velocity distribution , to be universal
over a wide range of filling fractions and only weakly dependent on all other
system parameters. There is a consistent overpopulation in the distribution's
tails, which scale as . More
importantly, the high probability central region of , at low velocities,
deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a
single adjustable parameter, in agreement with recent theoretical analysis of
inelastic hard spheres driven by a stochastic thermostat. To our knowledge,
this is the first time that Sonine deviations have been measured in an
experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.
Energy non-equipartition in systems of inelastic, rough spheres
We calculate and verify with simulations the ratio between the average
translational and rotational energies of systems with rough, inelastic
particles, either forced or freely cooling. The ratio shows non-equipartition
of energy. In stationary flows, this ratio depends mainly on the particle
roughness, but in nonstationary flows, such as freely cooling granular media,
it also depends strongly on the normal dissipation. The approach presented here
unifies and simplifies different results obtained by more elaborate kinetic
theories. We observe that the boundary induced energy flux plays an important
role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev
The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models
We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to
provide new constraints on its physical properties. We detect 645 (non-unique)
spectral lines amongst all spatial pixels. At least 61 different spectral lines
originate from the central region. A CO rotational diagram analysis shows four
excitation temperature components, 43 K, 197 K, 397 K, and 1057 K. Low-J CO
lines trace the outflow while the high-J CO lines are centered on the infrared
source. The low-excitation emission lines of H2O trace the large-scale outflow,
while the high-excitation emission lines trace a small-scale distribution
around the equatorial plane. We model the envelope structure using the dust
radiative transfer code, Hyperion, incorporating rotational collapse, an outer
static envelope, outflow cavity, and disk. The evolution of a rotating
collapsing envelope can be constrained by the far-infrared/millimeter SED along
with the azimuthally-averaged radial intensity profile, and the structure of
the outflow cavity plays a critical role at shorter wavelengths. Emission at
20-40 um requires a cavity with a constant-density inner region and a power-law
density outer region. The best fit model has an envelope mass of 19 solar mass
inside a radius of 0.315 pc and a central luminosity of 18.8 solar luminosity.
The time since collapse began is 24630-44000 yr, most likely around 36000 yr.
The corresponding mass infall rate in the envelope (1.2x10 solar mass
per year) is comparable to the stellar mass accretion rate, while the mass loss
rate estimated from the CO outflow is 20% of the stellar mass accretion rate.
We find no evidence for episodic accretion.Comment: Accepted for publication in ApJ. 33 pages; 34 figures; 4 table
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
âBelt and Roadâ project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
SCOZA for Monolayer Films
We show the way in which the self-consistent Ornstein-Zernike approach
(SCOZA) to obtaining structure factors and thermodynamics for Hamiltonian
models can best be applied to two-dimensional systems such as thin films. We
use the nearest-neighbor lattice gas on a square lattice as an illustrative
example.Comment: 10 pages, 5 figure
Existence and stability of multiple solutions to the gap equation
We argue by way of examples that, as a nonlinear integral equation, the gap
equation can and does possess many physically distinct solutions for the
dressed-quark propagator. The examples are drawn from a class that is
successful in describing a broad range of hadron physics observables. We apply
the homotopy continuation method to each of our four exemplars and thereby find
all solutions that exist within the interesting domains of light current-quark
masses and interaction strengths; and simultaneously provide an explanation of
the nature and number of the solutions, many of which may be associated with
dynamical chiral symmetry breaking. Introducing a stability criterion based on
the scalar and pseudoscalar susceptibilities we demonstrate, however, that for
any nonzero current-quark mass only the regular Nambu solution of the gap
equation is stable against perturbations. This guarantees that the existence of
multiple solutions to the gap equation cannot complicate the description of
phenomena in hadron physics.Comment: 14 pages, 15 figure
- âŚ