2,083 research outputs found

    Locally linear embedding: dimension reduction of massive protostellar spectra

    Get PDF
    We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey database. A brief comparison is also made with two other dimension reduction techniques; Principal Component Analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.Comment: 8 pages, 7 figures. Accepted for publication in MNRAS 2016 June 2

    Infrared Helium-Hydrogen Line Ratios as a Measure of Stellar Effective Temperature

    Get PDF
    We have observed a large sample of compact planetary nebulae in the near-infrared to determine how the 2^1P-2^1S HeI line at 2.058um varies as a function of stellar effective temperature, Teff. The ratio of this line with HI Br g at 2.166um has often been used as a measure of the highest Teff present in a stellar cluster, and hence on whether there is a cut-off in the stellar initial mass function at high masses. However, recent photoionisation modelling has revealed that the behaviour of this line is more complex than previously anticipated. Our work shows that in most aspects the photoionisation models are correct. In particular, we confirm the weakening of the 2^1P-2^1S as Teff increases beyond 40000K. However, in many cases the model underpredicts the observed ratio when we consider the detailed physical conditions in the individual planetary nebulae. Furthermore, there is evidence that there is still significant 2^1P-2^1S HeI line emission even in the planetary nebulae with very hot (Teff>100000K) central stars. It is clear from our work that this ratio cannot be considered as a reliable measure of effective temperature on its own.Comment: 24 pages 11 figures (in 62 separate postscript files) Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Near Infrared Spectra of Compact Planetary Nebulae

    Get PDF
    This paper continues our study of the behaviour of near infrared helium recombination lines in planetary nebula. We find that the 1.7007um 4^3D-3^3P HeI line is a good measure of the HeI recombination rate, since it varies smoothly with the effective temperature of the central star. We were unable to reproduce the observed data using detailed photoionisation models at both low and high effective temperatures, but plausible explanations for the difference exist for both. We therefore conclude that this line could be used as an indicator of the effective temperature in obscured nebula. We also characterised the nature of the molecular hydrogen emission present in a smaller subset of our sample. The results are consistent with previous data indicating that ultraviolet excitation rather than shocks is the main cause of the molecular hydrogen emission in planetary nebulae.Comment: Accepted for publication in MNRA

    The Near-Infrared Extinction Law in Regions of High Av

    Full text link
    We present a spectroscopic study of the shape of the dust-extinction law between 1.0 and 2.2um towards a set of nine ultracompact HII regions with Av > 15 mag. We find some evidence that the reddening curve may tend to flatten at higher extinctions, but just over half of the sample has extinction consistent with or close to the average for the interstellar medium. There is no evidence of extinction curves significantly steeper than the standard law, even where water ice is present. Comparing the results to the predictions of a simple extinction model, we suggest that a standard extinction law implies a robust upper limit to the grain-size distribution at around 0.1 - 0.3um. Flatter curves are most likely due to changes in this upper limit, although the effects of flattening due to unresolved clumpy extinction cannot be ruled out.Comment: 9 pages, 7 figure

    Forbidden Fe+ Emission from Supernovae Remnants in M33

    Get PDF
    Supernovae remnants are known to be luminous sources of infrared [FeII] emission. By studying how the luminosity scales with age, environment and other relevant factors, we can construct an [FeII] luminosity function for supernovae remnants. This will enable us to predict supernovae rates in starburst galaxies that are too distant for individual remnants to be resolved. First, however, we require accurate luminosities for a sample of remnants of varying ages, and in varying physical environments. As part of this project we have carried out an initial study of a small sample of evolved (ages greater than a few thousand years) remnants in M33. From these data we tentatively conclude that there is evidence for the peak luminosity in the [FeII] lines of these sources to arise in a narrow range of ages. In other respects, the M33 remnants are similar to their galactic and Magellanic Cloud counterparts in the observed peak luminosity. From this, and internal evidence as to the environment present in these regions, we conclude that the luminosity of evolved remnants is only marginally dependent on density and metallicity.Comment: 12 pages, uuencoded compressed postscript. Also available as postscript file from ftp://aaoepp.aao.gov.au/local/sll/snr.ps Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Probing discs around massive young stellar objects with CO first overtone emission

    Full text link
    We present high resolution (R~50,000) spectroastrometry over the CO 1st overtone bandhead of a sample of seven intermediate/massive young stellar objects. These are primarily drawn from the red MSX source (RMS) survey, a systematic search for young massive stars which has returned a large, well selected sample of such objects. The mean luminosity of the sample is approximately 5 times 10^4 L_\odot, indicating the objects typically have a mass of ~15 solar masses. We fit the observed bandhead profiles with a model of a circumstellar disc, and find good agreement between the models and observations for all but one object. We compare the high angular precision (0.2-0.8 mas) spectroastrometric data to the spatial distribution of the emitting material in the best-fitting models. No spatial signatures of discs are detected, which is entirely consistent with the properties of the best-fitting models. Therefore, the observations suggest that the CO bandhead emission of massive young stellar objects originates in small-scale disks, in agreement with previous work. This provides further evidence that massive stars form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA

    Helium and Hydrogen Line Ratios and The Stellar Content of Compact HII Regions

    Get PDF
    We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure' 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1)G-4^(3,1)F HeI recombination lines behave approximately as expected as the effective temperature of the central exciting star(s) increases. However, the 2.058um 2^1P-2^1S HeI line does not behave as the model predicts, or as seen in planetary nebulae. Both models and planetary nebulae showed a decrease in the HeI 2^1P-2^1S/HI Br gamma ratio above an effective temperature of 40000K. The compact HII regions do not show any such decrease. The problem with this line ratio is probably due to the fact that the photoionisation model does not account correctly for the high densities seen in these HII regions, and that we are therefore seeing more collisional excitation of the 2^1P level than the model predicts. It may also reflect some deeper problem in the assumed model stellar atmospheres. In any event, although the normal HeI recombination lines can be used to place constraints on the temperature of the hottest star present, the HeI 2^1P-2^1S/HI Br gamma ratio should not be used for this purpose in either Galactic HII regions or in starburst galaxies, and conclusions from previous work using this ratio should be regarded with extreme caution. We also show that the combination of the near infrared `pure' recombination line ratios with mid-infrared forbidden line data provides a good discriminant of the form of the far ultraviolet spectral energy distribution of the exciting star(s). From this we conclude that CoStar models are a poor match to the available data for our sources, though the more recent WM-basic models are a better fit.Comment: Accepted for publication in MNRA

    The RMS Survey: Far-Infrared Photometry of Young Massive Stars

    Full text link
    Context: The Red MSX Source (RMS) survey is a multi-wavelength campaign of follow-up observations of a colour-selected sample of candidate massive young stellar objects (MYSOs) in the galactic plane. This survey is returning the largest well-selected sample of MYSOs to date, while identifying other dust contaminant sources with similar mid-infrared colours including a large number of new ultra-compact (UC)HII regions. Aims:To measure the far-infrared (IR) flux, which lies near the peak of the spectral energy distribution (SED) of MYSOs and UCHII regions, so that, together with distance information, the luminosity of these sources can be obtained. Methods:Less than 50% of RMS sources are associated with IRAS point sources with detections at 60 micron and 100 micron, though the vast majority are visible in Spitzer MIPSGAL or IRAS Galaxy Atlas (IGA) images. However, standard aperture photometry is not appropriate for these data due to crowding of sources and strong spatially variable far-IR background emission in the galactic plane. A new technique using a 2-dimensional fit to the background in an annulus around each source is therefore used to obtain far-IR photometry for young RMS sources. Results:Far-IR fluxes are obtained for a total of 1113 RMS candidates identified as young sources. Of these 734 have flux measurements using IGA 60 micron and 100 micron images and 724 using MIPSGAL 70 micron images, with 345 having measurements in both data sets.Comment: 10 pages, 10 figures, 2 Tables, accepted to A&A. A full version of table 1 is available from the lead author or at the CDS upon publicatio
    • …
    corecore