1,538 research outputs found
Determination of the SSME high pressure oxidizer turbopump bearing temperature
The SSME high pressure liquid oxygen turbopump (HPOTP) bearings sometimes wear and experience heating and oxidation of the ball and raceway surfaces. So far it has been impossible to measure the temperature of the bearings directly during operation of the turbopumps. However, a method was developed for determining the surface temperature of the bearings from the composition of the oxides using oxidation samples for calibration and Auger Electron Spectroscopy (AES) for chemical analysis
Near-infrared integral field spectroscopy of Massive Young Stellar Objects
We present medium resolution () -band integral field
spectroscopy of six MYSOs. The targets are selected from the RMS survey, and we
used the NIFS on the Gemini North telescope. The data show various spectral
line features including Br, CO, H, and \mbox{He\,{\sc i}}. The
Br line is detected in emission in all objects with
-- 200 kms. V645 Cyg shows a high-velocity
P-Cygni profile between -800 kms and -300 kms. We performed
three-dimensional spectroastrometry to diagnose the circumstellar environment
in the vicinity of the central stars using the Br line. We measured the
centroids of the velocity components with sub-mas precision. The centroids
allow us to discriminate the blueshifted and redshifted components in a roughly
east--west direction in both IRAS 18151--1208 and S106 in Br. This lies
almost perpendicular to observed larger scale outflows. We conclude, given the
widths of the lines and the orientation of the spectroastrometric signature,
that our results trace a disc wind in both IRAS 18151--1208 and S106. The CO
absorption lines at low transitions are detected in IRAS
18151--1208 and AFGL 2136. We analysed the velocity structure of the neutral
gas discs. In IRAS 18151--1208, the absorption centroids of the blueshifted and
redshifted components are separated in a direction of north-east to south-west,
nearly perpendicular to that of the larger scale jet. The
position-velocity relations of these objects can be reproduced with central
masses of 30 M_{\sun} for IRAS 18151--1208 and 20 M_{\sun} for AFGL 2136.
We also detect CO bandhead emission in IRAS 18151--1208, S106 and
V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model,
with masses of 15, 20 and 20 M_{\sun} respectively.Comment: 17 pages, 10 figures, accepted by MNRA
Singlet-triplet dispersion reveals additional frustration in the triangular dimer compound BaMnO
We present single crystal inelastic neutron scattering measurements of the
S=1 dimerized quasi-two-dimensional antiferromagnet BaMnO. The
singlet-triplet dispersion reveals nearest-neighbor and next-nearest-neighbor
ferromagnetic interactions between adjacent bilayers that compete against each
other. Although the inter-bilayer exchange is comparable to the intra-bilayer
exchange, this additional frustration reduces the effective coupling along the
c-axis and leads to a quasi-two dimensional behavior. In addition, the obtained
exchange values are able to reproduce the four critical fields in the phase
diagram.Comment: 4 pages, 3 color figures, submitted to an APS physical review journa
Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3
Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3
have been studied using bulk susceptibility, x-ray diffraction, and inelastic
neutron scattering techniques. We investigate the triplet gap in the magnetic
excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and
its relation to the spin-Peierls dimerisation order parameter. We employ two
different theoretical forms to model the inelastic neutron scattering cross
section and chi''(Q,omega), and show the sensitivity of the gap energy to the
choice of chi''(Q,omega). We find that a finite gap exists at the spin-Peierls
phase transition.Comment: 15 Pages, 7 Figures, Submitted to J. Phys. :Condensed Matte
The RMS Survey: The Bolometric Fluxes and Luminosity Distributions of Young Massive Stars
Context: The Red MSX Source (RMS) survey is returning a large sample of
massive young stellar objects (MYSOs) and ultra-compact (UC) \HII{} regions
using follow-up observations of colour-selected candidates from the MSX point
source catalogue. Aims: To obtain the bolometric fluxes and, using kinematic
distance information, the luminosities for young RMS sources with far-infrared
fluxes. Methods: We use a model spectral energy distribution (SED) fitter to
obtain the bolometric flux for our sources, given flux data from our work and
the literature. The inputs to the model fitter were optimised by a series of
investigations designed to reveal the effect varying these inputs had on the
resulting bolometric flux. Kinematic distances derived from molecular line
observations were then used to calculate the luminosity of each source.
Results: Bolometric fluxes are obtained for 1173 young RMS sources, of which
1069 have uniquely constrained kinematic distances and good SED fits. A
comparison of the bolometric fluxes obtained using SED fitting with trapezium
rule integration and two component greybody fits was also undertaken, and
showed that both produce considerable scatter compared to the method used here.
Conclusions: The bolometric flux results allowed us to obtain the luminosity
distributions of YSOs and UC\HII{} regions in the RMS sample, which we find to
be different. We also find that there are few MYSOs with L
10\lsol{}, despite finding many MYSOs with 10\lsol{} L
10\lsol{}.Comment: 12 pages, 12 figures, 3 tables, accepted to A&A. The full versions of
tables 1 and 2 will be available via the CDS upon publicatio
Quantum spin correlations in an organometallic alternating sign chain
High resolution inelastic neutron scattering is used to study excitations in
the organometallic magnet DMACuCl. The correct magnetic Hamiltonian
describing this material has been debated for many years. Combined with high
field bulk magnetization and susceptibility studies, the new results imply that
DMACuCl is a realization of the alternating
antiferromagnetic-ferromagnetic (AFM-FM) chain. Coupled-cluster calculations
are used to derive exchange parameters, showing that the AFM and FM
interactions have nearly the same strength. Analysis of the scattering
intensities shows clear evidence for inter-dimer spin correlations, in contrast
to existing results for conventional alternating chains. The results are
discussed in the context of recent ideas concerning quantum entanglement.Comment: 5 pages, 4 figures included in text. Submitted to APS Journal
- …