5 research outputs found

    A molecular tweezer antagonizes seminal amyloids and HIV infection.

    No full text

    Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction

    No full text
    Amyloid-like peptide nanofibrils (PNFs) are abundant in nature providing rich bioactivities and playing both functional and pathological roles. The structural features responsible for their unique bioactivities are, however, still elusive. Supramolecular nanostructures are notoriously challenging to optimize, as sequence changes affect self-assembly, fibril morphologies and biorecognition. Herein, we report the first sequence optimization of PNFs for enhanced retroviral gene transduction via a multiparameter and a multiscale approach. Retroviral gene transfer is the method of choice for stable delivery of genetic information into cells offering great perspectives for the treatment of genetic disorders. Single fibril imaging, zeta potential, vibrational spectroscopy and quantitative retroviral transduction assays provided the structure parameters responsible for PNF assembly, fibril morphologies and PNF-virus-cell interactions. Optimized peptide sequences have been obtained quantitatively forming supramolecular nanofibrils with high intermolecular beta-sheet content that efficiently bound virions and attached to cellular membranes revealing efficient retroviral gene transfe

    Supramolecular peptide nanofibrils with optimized sequences and molecular structures for efficient retroviral transduction

    Get PDF
    Amyloid‐like peptide nanofibrils (PNFs) are abundant in nature providing rich bioactivities and playing both functional and pathological roles. The structural features responsible for their unique bioactivities are, however, still elusive. Supramolecular nanostructures are notoriously challenging to optimize, as sequence changes affect self‐assembly, fibril morphologies, and biorecognition. Herein, the first sequence optimization of PNFs, derived from the peptide enhancing factor‐C (EF‐C, QCKIKQIINMWQ), for enhanced retroviral gene transduction via a multiparameter and a multiscale approach is reported. Retroviral gene transfer is the method of choice for the stable delivery of genetic information into cells offering great perspectives for the treatment of genetic disorders. Single fibril imaging, zeta potential, vibrational spectroscopy, and quantitative retroviral transduction assays provide the structure parameters responsible for PNF assembly, fibrils morphology, secondary and quaternary structure, and PNF‐virus‐cell interactions. Optimized peptide sequences such as the 7‐mer, CKFKFQF, have been obtained quantitatively forming supramolecular nanofibrils with high intermolecular ÎČ‐sheet content that efficiently bind virions and attach to cellular membranes revealing efficient retroviral gene transfer.<br/

    Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity

    No full text
    International audienceHIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-ÎșB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses
    corecore