97 research outputs found

    Electrodynamics of an omega-band as deduced from optical and magnetometer data

    Get PDF
    We investigate an omega-band event that took place above northern Scandinavia around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based magnetometer, optical and riometer measurements together with satellite based optical images. The optical and riometer data are used to estimate the ionospheric Hall and Pedersen conductances, while ionospheric equivalent currents are obtained from the magnetometer measurements. These data sets are used as input in a local KRM calculation, which gives the ionospheric potential electric field as output, thus giving us a complete picture of the ionospheric electrodynamic state during the omega-band event. <br><br> The overall structure of the electric field and field-aligned current (FAC) provided by the local KRM method are in good agreement with previous studies. Also the <I><B>E</B></I>&times;<I><B>B</B></I> drift velocity calculated from the local KRM solution is in good qualitative agreement with the plasma velocity measured by the Finnish CUTLASS radar, giving further support for the new local KRM method. The high-resolution conductance estimates allow us to discern the detailed structure of the omega-band current system. The highest Hall and Pedersen conductances, ~50 and ~25 S, respectively, are found at the edges of the bright auroral tongue. Inside the tongue, conductances are somewhat smaller, but still significantly higher than typical background values. The electric field shows a converging pattern around the tongues, and the field strength drops from ~40 mV/m found at optically dark regions to ~10 mV/m inside the areas of enhanced conductivity. Downward FAC flow in the dark regions, while upward currents flow inside the auroral tongue. Additionally, sharp conductance gradients at the edge of an auroral tongue are associated with narrow strips of intense FACs, so that a strip of downward current flows at the eastern (leading) edge and a similar strip of upward current is present at the western (trailing) edge. The Joule heating follows the electric field pattern, so that it is diminished inside the bright auroral tongue

    Observation of O+ 4P-4D0 lines in proton aurora over Svalbard

    Get PDF
    Spectra of a proton aurora event show lines of O+ 4P-4D0 multiplet (4639–4696 Å) enhanced relative to the N2 +1N(0,2) compared to normal electron aurora. Conjugate satellite particle measurements are used as input to electron and proton transport models, to show that p/H precipitation is the dominant source of both the O+ and N2 +1N emissions. The emission cross-section of the multiplet in p collisions with O and O2 estimated from published work does not explain the observed O+ brightness, suggesting a higher emission cross-section for low energy p impact on O

    Magnetospheric reconnection driven by solar wind pressure fronts

    Get PDF
    International audienceRecent work has shown that solar wind dynamic pressure changes can have a dramatic effect on the particle precipitation in the high-latitude ionosphere. It has also been noted that the preexisting interplanetary magnetic field (IMF) orientation can significantly affect the resulting changes in the size, location, and intensity of the auroral oval. Here we focus on the effect of pressure pulses on the size of the auroral oval. We use particle precipitation data from up to four Defense Meteorological Satellite Program (DMSP) spacecraft and simultaneous POLAR Ultra-Violet Imager (UVI) images to examine three events of solar wind pressure fronts impacting the magnetosphere under two IMF orientations, IMF strongly southward and IMF Bz nearly zero before the pressure jump. We show that the amount of change in the oval and polar cap sizes and the local time extent of the change depends strongly on IMF conditions prior to the pressure enhancement. Under steady southward IMF, a remarkable poleward widening of the oval at all magnetic local times and shrinking of the polar cap are observed after the increase in solar wind pressure. When the IMF Bz is nearly zero before the pressure pulse, a poleward widening of the oval is observed mostly on the nightside while the dayside remains unchanged. We interpret these differences in terms of enhanced magnetospheric reconnection and convection induced by the pressure change. When the IMF is southward for a long time before the pressure jump, open magnetic flux is accumulated in the tail and strong convection exists in the magnetosphere. The compression results in a great enhancement of reconnection across the tail which, coupled with an increase of magnetospheric convection, leads to a dramatic poleward expansion of the oval at all MLTs (dayside and nightside). For near-zero IMF Bz before the pulse the open flux in the tail, available for closing through reconnection, is smaller. This, in combination with the weaker magnetospheric convection, leads to a more limited poleward expansion of the oval, mostly on the nightside. Key words. Magnetospheric physics (solar windmagnetosphere interactions; magnetospheric configuration and dynamics; auroral phenomena

    On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars

    Get PDF
    Mars has a complex magnetic topology where crustal magnetic fields can interact with the solar wind magnetic field to form magnetic cusps. On the nightside, solar wind electron precipitation can produce enhanced ionization at cusps while closed field regions adjacent to cusps can be devoid of significant ionization. Using an electron transport model, we calculate the spatial structure of the nightside ionosphere of Mars using Mars Global Surveyor electron measurements as input. We find that localized regions of enhanced ionospheric density can occur at magnetic cusps adjacent to low density regions. Under this configuration, thermospheric winds can drive ionospheric electrojets. Collisional ions move in the direction of the neutral winds while magnetized electrons move perpendicular to the wind direction. This difference in motion drives currents and can lead to charge accumulation at the edges of regions of enhanced ionization. Polarization fields drive secondary currents which can reinforce the primary currents leading to electrojet formation. We estimate the magnitude of these electrojets and show that their magnetic perturbations can be detectable from both orbiting spacecraft and the surface. The magnitude of the electrojets can vary on diurnal and annual time scales as the strength and direction of the winds vary. These electrojets may lead to localized Joule heating, and closure of these currents may require field-aligned currents which may play a role in high altitude acceleration processes

    Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements

    No full text
    International audienceThis study is a statistical analysis on energy distribution of precipitating electrons, based on CNA (cosmic noise absorption) data obtained from the 256-element imaging riometer in Poker Flat, Alaska (65.11° N, 147.42° W), and optical data measured with an MSP (Meridian Scanning Photometer) over 79 days during the winter periods from 1996 to 1998. On the assumption that energy distributions of precipitating electrons represent Maxwellian distributions, CNA is estimated based on the observation data of auroral 427.8-nm and 630.0-nm emissions, as well as the average atmospheric model, and compared with the actual observation data. Although the observation data have a broad distribution, they show systematically larger CNA than the model estimate. CNA determination using kappa or double Maxwellian distributions, instead of Maxwellian distributions, better explains the distribution of observed CNA data. Kappa distributions represent a typical energy distribution of electrons in the plasma sheet of the magnetosphere, the source region of precipitating electrons. Pure kappas are more likely during quiet times ? and quiet times are more likely than active times. This result suggests that the energy distribution of precipitating electrons reflects the energy distribution of electrons in the plasma sheet. Key words. Ionosphere (auroral ionosphere; particle precipitation; polar ionosphere
    corecore