9 research outputs found

    Thermotropic Phase Boundaries in Classic Ferroelectrics

    Get PDF
    High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO3 and KNbO3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of \u27green\u27 high-performance materials

    Shaping, imaging and controlling plasmonic interference fields at buried interfaces

    Get PDF
    Filming and controlling plasmons at buried interfaces with nanometer (nm) and femtosecond (fs) resolution has yet to be achieved and is critical for next generation plasmonic/electronic devices. In this work, we use light to excite and shape a plasmonic interference pattern at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is filmed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at approximately 0.3c, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. These results, demonstrating dynamical imaging with PINEM, pave the way for the fs/nm visualization and control of plasmonic fields in advanced heterostructures based on novel 2D materials such as graphene, MoS2_2, and ultrathin metal films.Comment: 16 pages, 5 figures, 3 supplementary figure

    Monoclinic Phases Arising Across Thermal Inter-Ferroelectric Phase Transitions

    Get PDF
    Thermotropic phase boundaries (TPBs), as thermal analogs of morphotropic phase boundaries (MPBs), are associated with the thermal inter-ferroelectric phase transitions. Similar to an MPB, a TPB exhibits a characteristically flattened energy profile which favors polarization rotation, thus giving rise to a structurally bridging low-symmetry phase. We report on the kinetic process of thermal inter-ferroelectric phase transitions in BaTiO3 and KNbO3 using the phase-field method. The domain structures are found to play key roles in stabilizing the monoclinic phase. In simple domain structures, the monoclinic phase is a transient phase and cannot be stabilized into its neighboring phase regimes. However, by introducing structural inhomogeneity (orthogonal in-plane domain twins), we found that the monoclinic phase can be stabilized over a range of over 100 K across the transition. As a result, the piezoelectric properties are enhanced due to the stabilized monoclinic phase. In addition to the emergence of new piezoelectric components with monoclinic symmetry, most of the original components present in the tetragonal symmetry also show substantial enhancement with the rotation of polarization

    Electron microscopy methods for space-, energy-, and time-resolved plasmonics

    No full text
    Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular

    Symmetry disquisition on the TiOX phase diagram (X=Br,Cl)

    Get PDF
    The sequence of phase transitions and the symmetry of, in particular, the low temperature incommensurate and spin-Peierls phases of the quasi-one-dimensional inorganic spin-Peierls system TiOX (X=Br and Cl) have been studied using inelastic light scattering experiments. The anomalous first-order character of the transition to the spin-Peierls phase is found to be a consequence of the different symmetries of the incommensurate and spin-Peierls (P21/m) phases. The pressure dependence of the lowest transition temperature strongly suggests that magnetic interchain interactions play an important role in the formation of the spin-Peierls and the incommensurate phases. Finally, a comparison of Raman data on VOCl to the TiOX spectra shows that the high energy scattering previously observed has a phononic origin.

    Emergent room temperature polar phase in CaTiO3 nanoparticles and single crystals

    Get PDF
    Polar instabilities are well known to be suppressed on scaling materials down to the nanoscale, when the electrostatic energy increase at surfaces exceeds lowering of the bulk polarization energy. Surprisingly, here we report an emergent low symmetry polar phase arising in nanoscale powders of CaTiO3, the original mineral named perovskite discovered in 1839 and considered nominally nonpolar at any finite temperature in the bulk. Using nonlinear optics and spectroscopy, X-ray diffraction, and microscopy studies, we discover a well-defined polar to non-polar transition at a TC = 350 K in these powders. The same polar phase is also seen as a surface layer in bulk CaTiO3 single crystals, forming striking domains with in-plane polarization orientations. Density functional theory reveals that oxygen octahedral distortions in the surface layer lead to the stabilization of the observed monoclinic polar phase. These results reveal new ways of overcoming the scaling limits to polarization in perovskites
    corecore