18 research outputs found

    CCMV -virusten proteiinikapsidin leimaaminen sukkinimidyyli-4-[18F]fluorobentsoaatilla

    Get PDF
    Fluori-18 on positroniemissiolla hajoava nuklidi, jonka puoliintumisaika on 110 minuuttia. Hajoamistapansa johdosta F-18:a voidaan käyttää merkkiaineena positroniemissiotomografiassa (PET), jossa se on käytetyin radionuklidi sopivan pitkän puoliintumisaikansa ja energiansa (0,64 MeV) takia. Uusia radiolääkeaineita pyritään kehittämään erilaisiin lääketieteellisiin sovellutuksiin ja suurta mielenkiintoa ovat keränneet bioperäiset nanomateriaalit, joiden suuri pinta-ala/tilavuus -suhde tarjoaa paljon erilaisia mahdollisuuksia mm. spesifiseen lääkeainekuljetukseen. Suora F-18:n nukleofiilinen substituutio on usein vaikea ja joskus jopa mahdoton suorittaa kompleksisissa ja monisubstituoiduissa molekyyleissä, joita ei ole aktivoitu. Esimerkiksi monet biomolekyylit eivät kestä suorassa fluorauksessa käytettäviä korkeita lämpötiloja ja liuottimia. Tällöin käytetään apuna F-18-leimattuja prosteettisia ryhmiä esim. sukkinimidyyli-4-[18F]fluorobentsoaattia ([18F]SFB), joiden avulla saadaan F-18 leimattua biomolekyyliin. Prosteettisten ryhmien valmistus vaatii usein monivaiheiset synteesit, mikä tekee niiden käytöstä haastavaa. [18F]SFB pystyy reagoimaan peptidiketjun vapaiden aminoryhmien kanssa (lysiini ja terminaalinen amino-ryhmä) paljon miedommissa olosuhteissa kuin suorassa radiofluorauksessa. F-18 saadaan näin liitettyä biomolekyyliin, jolloin biomolekyyli saadaan leimattua radionuklidilla vahingoittamatta biomolekyylin rakennetta. Tässä tutkielmassa leimattiin CCMV-virusten proteiinikapsidin pintarakennetta eri puskuriliuoksissa käyttäen [18F]SFB:tä. Ensin [18F]SFB:n automatisoitu synteesi optimoitiin laboratorion laitteistolle sopivaksi, jotta sitä voitiin valmistaa toistettavasti hyvällä radiokemiallisella saannolla. Tämän jälkeen CCMV-virusten leimautuvuutta testatiin neljässä eri puskuriliuoksessa pH-välillä 6-8. Puskuriliuoksina käytettiin fosfori- ja boraattipuskureita. [18F]SFB:n synteesi saatiin optimoitua ja tuotetta saatiin tuotettua hyvillä saannoilla, puoliaikakorjatun saannon ollessa 71 ± 3 % ja radiokemiallisen puhtauden ollessa yli 90 %. Virukset saatiin leimattua ja parhaimmillaan päästiin 12,9 ± 14,9 %:n leimautuvuuteen. Leimausta ei saatu kuitenkaan tehtyä toistettavasti ja leimatuista viruksista läpäisyelektronimikroskopialla (TEM) otetuista kuvista nähtiin, että virukset olivat hajonneet leimauksen aikana

    Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model

    Get PDF
    Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [111In]In-DOTA-PEG4-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [111In]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 ± 1.7% of the injected activity/g in blood at 15 min for [111In]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors

    Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model

    Get PDF
    Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [111In]In-DOTA-PEG4-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [111In]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 ± 1.7% of the injected activity/g in blood at 15 min for [111In]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors

    Abscopal Effect in Non-injected Tumors Achieved with Cytokine-Armed Oncolytic Adenovirus

    Get PDF
    Cancer treatment with local administration of armed oncolytic viruses could potentially induce systemic antitumor effects, or the abscopal effect, as they self-amplify in tumors, induce danger signaling, and promote tumor-associated antigen presentation. In this study, oncolytic adenovirus coding for human tumor necrosis factor alpha (TNF-alpha) and interleukin-2 (IL-2) Ad5/3-E2F-d24-hTNF-alpha-IRES-hIL-2 (also known as [a.k.a.] TILT-123) provoked antitumor efficacy in tumors that were injected with Ad5/3-E2F-d24-hTNF-alpha-IRES-hIL-2 and those that were left non-injected in the same animal. Importantly, the virus was able to travel to distant tumors. To dissect the effects of oncolysis and cytokines, we studied replication-incompetent viruses in mice. Systemic antitumor effects were similar in both models, highlighting the importance of the arming device. The cytokines induced positive changes in immune cell infiltrates and induced the expression of several immune-reaction-related genes in tumors. In addition, Ad5/3-E2F-d24-hTNF-alpha-IRES-hIL-2 was able to increase homing of adoptively transferred tumor-infiltrating lymphocytes into both injected and non-injected tumors, possibly mediated through chemokine expression. In summary, local treatment with Ad5/3-E2F-d24-hTNF-alpha-IRES-hIL-2 resulted in systemic antitumor efficacy by inducing immune cell infiltration and trafficking into both treated and untreated tumors. Moreover, the oncolytic adenovirus platform had superior systemic effects over replication-deficient vector through spreading into distant tumors.Peer reviewe

    Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics

    Get PDF
    Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.Peer reviewe

    Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [Zr-89]Zr-DFO-PEG(5)-Tz

    Get PDF
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.Peer reviewe

    Site-Specific In-111-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model

    Get PDF
    Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [In-111]In-DOTA-PEG(4)-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [In-111]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 +/- 1.7% of the injected activity/g in blood at 15 min for [In-111]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors

    Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics

    Get PDF
    Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements

    Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [Zr-89]Zr-DFO-PEG(5)-Tz

    Get PDF
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics
    corecore