62 research outputs found

    Translating and evaluating historic phenotyping algorithms using SNOMED CT

    Get PDF
    OBJECTIVE: Patient phenotype definitions based on terminologies are required for the computational use of electronic health records. Within UK primary care research databases, such definitions have typically been represented as flat lists of Read terms, but Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) (a widely employed international reference terminology) enables the use of relationships between concepts, which could facilitate the phenotyping process. We implemented SNOMED CT-based phenotyping approaches and investigated their performance in the CPRD Aurum primary care database. MATERIALS AND METHODS: We developed SNOMED CT phenotype definitions for 3 exemplar diseases: diabetes mellitus, asthma, and heart failure, using 3 methods: "primary" (primary concept and its descendants), "extended" (primary concept, descendants, and additional relations), and "value set" (based on text searches of term descriptions). We also derived SNOMED CT codelists in a semiautomated manner for 276 disease phenotypes used in a study of health across the lifecourse. Cohorts selected using each codelist were compared to "gold standard" manually curated Read codelists in a sample of 500 000 patients from CPRD Aurum. RESULTS: SNOMED CT codelists selected a similar set of patients to Read, with F1 scores exceeding 0.93, and age and sex distributions were similar. The "value set" and "extended" codelists had slightly greater recall but lower precision than "primary" codelists. We were able to represent 257 of the 276 phenotypes by a single concept hierarchy, and for 135 phenotypes, the F1 score was greater than 0.9. CONCLUSIONS: SNOMED CT provides an efficient way to define disease phenotypes, resulting in similar patient populations to manually curated codelists

    Unraveling the relationships between alpha- and beta-adrenergic modulation and the risk of heart failure

    Get PDF
    Background: The effects of α and ß adrenergic receptor modulation on the risk of developing heart failure (HF) remains uncertain due to a lack of randomized controlled trials. This study aimed to estimate the effects of α and ß adrenergic receptors modulation on the risk of HF and to provide proof of principle for genetic target validation studies in HF. Methods: Genetic variants within the cis regions encoding the adrenergic receptors α1A, α2B, ß1, and ß2 associated with blood pressure in a 757,601-participant genome-wide association study (GWAS) were selected as instruments to perform a drug target Mendelian randomization study. Effects of these variants on HF risk were derived from the HERMES GWAS (542,362 controls; 40,805 HF cases). Results: Lower α1A or ß1 activity was associated with reduced HF risk: odds ratio (OR) 0.83 (95% CI 0.74–0.93, P = 0.001) and 0.95 (95% CI 0.93–0.97, P = 8 × 10−6). Conversely, lower α2B activity was associated with increased HF risk: OR 1.09 (95% CI 1.05–1.12, P = 3 × 10−7). No evidence of an effect of lower ß2 activity on HF risk was found: OR 0.99 (95% CI 0.92–1.07, P = 0.95). Complementary analyses showed that these effects were consistent with those on left ventricular dimensions and acted independently of any potential effect on coronary artery disease. Conclusions: This study provides genetic evidence that α1A or ß1 receptor inhibition will likely decrease HF risk, while lower α2B activity may increase this risk. Genetic variant analysis can assist with drug development for HF prevention

    Therapeutic Targets for Heart Failure Identified Using Proteomics and Mendelian Randomization

    Get PDF
    Background: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. Methods: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of four population-based studies, comprising a total of 3,019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization (MR), using cis-protein quantitative loci genetic instruments identified from genome-wide association studies (GWAS) in over 30,000 individuals. To improve the precision of causal estimates, we implemented an MR model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and MR models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait MR analysis. Results: 44/90 proteins were positively associated with risk of incident HF (P < 6.0 x 10-4). Among these, eight proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23) and MMP-12 (Matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. Conclusions: We identified 44 circulating proteins that were associated with incident HF, of which eight showed evidence of a causal relationship and seven were druggable, including adrenomedullin which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases

    The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians:A Mendelian randomization study

    Get PDF
    Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk

    Weight Change and the Onset of Cardiovascular Diseases: Emulating Trials Using Electronic Health Records.

    Get PDF
    BACKGROUND: Cross-sectional measures of body mass index (BMI) are associated with cardiovascular disease (CVD) incidence, but less is known about whether weight change affects the risk of CVD. METHODS: We estimated the effect of 2-y weight change interventions on 7-y risk of CVD (CVD death, myocardial infarction, stroke, hospitalization from coronary heart disease, and heart failure) by emulating hypothetical interventions using electronic health records. We identified 138,567 individuals with 45-69 years of age without chronic disease in England from 1998 to 2016. We performed pooled logistic regression, using inverse-probability weighting to adjust for baseline and time-varying confounders. We categorized each individual into a weight loss, maintenance, or gain group. RESULTS: Among those of normal weight, both weight loss [risk difference (RD) vs. weight maintenance = 1.5% (0.3% to 3.0%)] and gain [RD = 1.3% (0.5% to 2.2%)] were associated with increased risk for CVD compared with weight maintenance. Among overweight individuals, we observed moderately higher risk of CVD in both the weight loss [RD = 0.7% (-0.2% to 1.7%)] and the weight gain group [RD = 0.7% (-0.1% to 1.7%)], compared with maintenance. In the obese, those losing weight showed lower risk of coronary heart disease [RD = -1.4% (-2.4% to -0.6%)] but not of stroke. When we assumed that chronic disease occurred 1-3 years before the recorded date, estimates for weight loss and gain were attenuated among overweight individuals; estimates for loss were lower among obese individuals. CONCLUSION: Among individuals with obesity, the weight-loss group had a lower risk of coronary heart disease but not of stroke. Weight gain was associated with increased risk of CVD across BMI groups. See video abstract at, http://links.lww.com/EDE/B838

    Genetic and environmental determinants of diastolic heart function

    Get PDF
    Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets

    HFrEF subphenotypes based on 4210 repeatedly measured circulating proteins are driven by different biological mechanisms

    Get PDF
    Background: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment. Methods: In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1–2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated. Findings: We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1–4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76–6.69), and 2.88 (1.37–6.03), respectively). Interpretation: Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01851538 https://clinicaltrials.gov/ct2/show/NCT01851538. Funding: EU/ EFPIA IMI2JU BigData@Heart grant n° 116074, Jaap Schouten Foundation and Noordwest Academie.</p
    • …
    corecore