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Abstract

Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic
and molecular basis of heart failure.
Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases
and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed
genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948
to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51
individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male
(34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate
sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for com-
mon variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01–0.05) at P< 5 × 10�8 under
an additive genetic model.
Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate
insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) de-
velop genomic tools for disease stratification and risk prediction.

Keywords Heart failure; Cardiomyopathy; Genetics; Biomarkers; Association studies
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Introduction

Heart failure (HF) is a complex clinical syndrome that imposes
a substantial burden on public health; an estimated 30 mil-
lion people worldwide are living with HF, and the prevalence
is expected to rise with the aging of the global population.1

HF is associated with substantial morbidity and mortality,
underscoring the importance of mitigating the disease bur-
den. Despite the advent of disease-modifying treatments
for HF with reduced ejection fraction, considerable unmet
need remains.2 For HF with preserved ejection fraction, an in-
creasingly prevalent subtype, no treatments are available to
improve patient outcomes.3 Decades of research, based on
preclinical models of HF, have uncovered numerous potential
therapeutic targets; however, few have been successfully val-
idated in phase III outcomes trials, reflecting, in part, the chal-
lenge of modelling complex age-associated multi-morbid
disease processes.4 Human genetics provides a means to
study causal biology in the patient: informing target selection
and the formulation of a mechanism-based taxonomy of dis-
ease subtypes to help identify new therapeutic targets.5

Heart failure generally occurs when changes in cardiac
structure or function result in impairment of ventricular filling
and/or contraction and in impaired cardiac output and/or in-
creased cardiac filling pressures.2 Coronary artery disease and
diseases causing abnormal cardiac loading (such as hyperten-
sion, valvular heart disease, and congenital heart disease) are
established and common causes of HF. Many other factors
can increase the risk of HF through direct effects on

myocardial structure and function (cardiomyopathy), includ-
ing, for a small proportion of cases, monogenic cardiomyopa-
thy syndromes.6 Familial aggregation and adoption studies
suggest a heritable component to HF risk and disease pro-
gression with estimates for heritability up to 26%.7–9 Linkage
studies of familial cardiomyopathies and genome-wide asso-
ciation studies (GWASs) have identified a number of rare
and common variants associated with increased HF risk
(Figure 1); however, the genetic architecture remains largely
unknown.10–13

It is a feature of many complex traits and diseases that
common genetic variants account for a proportion of the
population genetic variance.14 The genetic background of in-
dividual patients with respect to HF risk may modify the ef-
fects of HF risk factors, including influencing the penetrance
and expression of Mendelian gene disorders, as has been ob-
served for other common complex diseases.15 Furthermore,
the identification of common disease-associated variants im-
plicates regions of the genome that harbour causal genes and
enables the appraisal of the causal role of risk factors and
pharmacological targets by Mendelian randomization (MR)
analysis.16 GWASs offer a robust and reproducible approach
for the discovery of common disease-associated variants.
Large samples, typically achieved by combining multiple stud-
ies through meta-analysis, are required to achieve sufficient
statistical power to discern genotype–disease associations
with modest effects.17 These approaches help inform a
mechanism-based taxonomy of HF to support the develop-
ment of effective targeted therapeutics.18
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Here, we describe the HERMES (HEart failure Molecular
Epidemiology for Therapeutic targetS) consortium: a global
scientific collaboration of genetic studies linked to HF and re-
lated phenotypes. The consortium will develop tools and
methods to enable the definition of HF subtypes and related
traits across multi-modal datasets, including derivation of val-
idated phenotypes from genomic biobanks linked to elec-
tronic health records.19 HERMES aims to unlock the
potential for human genetics to inform the identification
and validation of novel therapeutic approaches in HF by cre-
ating an open collaborative resource for the scientific
community.20,21

Study design

Aims

The core objective of the HERMES consortium is to conduct
large-scale genetic association studies of HF and related phe-
notypes in order to identify common and low-frequency

genetic variants associated with HF risk and prognosis
(Figure 2). In subsequent stages, we will extend these analy-
ses to include rare variant association studies, based on se-
quence data available in a subset of studies. GWASs will be
complemented by a range of follow-up analyses, including
MR and rare variant burden tests, in order to identify novel
disease mechanisms and to test existing therapeutic
hypotheses.

Addressing syndromic heterogeneity

A stepwise approach to the genetic study of HF phenotypes
and sub-phenotypes will be employed. The first completed
analysis addressed the undifferentiated HF syndrome,
without subtyping according to conventional classifiers of
aetiology or phenotypes of left ventricular ejection fraction
(LVEF).22 This study maximizes statistical power for the
discovery of genetic factors influencing common pathophysi-
ologic mechanisms, such as left ventricular fibrotic remodel-
ling, increased filling pressures, neurohormonal activation,
and extracellular fluid retention (systemic and pulmonary

Figure 1 Genetic architecture of heart failure (HF) onset and progression. Examples of genes in which common (allele frequency 5% and greater),
low-frequency (1–5%), or rare variants (<1%) have been shown to influence risk for HF onset or progression. Effect sizes are expressed in odds ratios
for HF risk and hazard ratios for HF progression. Common variants can be identified in genome-wide association studies as exemplified by BAG3,
CLCNKA, and TSLP loci, whereas variations with low population allele frequencies such as familial variants in the MYH7, LMNA, and LAMP2 genes as-
sociated with cardiomyopathy will typically require sequencing-based approaches (based on a recent review article).27 Familial variants in LMNA and
LAMP2 have been associated poor prognosis and particular cardiac phenotypes, manifesting with cardiolaminopathy and Danon disease, respectively.
*Although individually rare, protein-truncating variants in the large gene encoding Titin (TTN) collectively have a reported prevalence of 1% in the pop-
ulation, confer increased risk of HF, and have evidence of interaction with environmental factors such as alcohol, chemotherapy, and pregnancy. **A
25-basepair deletion of the gene encoding cardiac myosin-binding protein C (MYBPC3) conferring risk for HF has been reported to have an allele fre-
quency of 4% in Southern Asian populations, highlighting how low-frequency variants of large effect may be population specific.
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vascular congestion) that may modify risk associated with up-
stream HF risk factors. Subsequent studies will address HF
subtypes, including established and novel aetiological and
cardiac morpho-functional phenotypes.

HERMES collaborating studies

At present, HERMES is a collection of 51 studies that have de-
rived genome-wide genotyping data from community-based
participants or hospitalized patients with clinical HF, including
longitudinal population-based cohort studies, hospital-based
electronic health record cohorts, case–control studies, and
clinical trials. Detailed case ascertainment for HF and related
cardiovascular phenotypes has been done for most studies; in
others, phenotyping is based on routinely collected data from
clinical care, national quality registers, or public data reposi-
tories. In addition to studies based in academic institutions,
the collaboration includes many clinical trial datasets, provid-
ing a unique opportunity to study the genetic determinants
of disease progression in HF. Due to the provenance of data
currently available in contributing cohorts, currently ongoing
initial analyses are limited to individuals of European ances-
try; however, a central objective will be to include subjects
of non-European ancestry as data from ancestrally diverse
populations become available. Each contributing study in
HERMES has appropriate ethical approval from the respective
institutional review boards, and all participants provided in-
formed consent for the use of their genetic data for research.

Organization

The collaborative framework of HERMES is similar to that of
other collaborative consortia for genetic investigations, as
shown in Figure 3.23 All studies participate on an equal basis
and operate under mutually agreed policies concerning pro-
ject management, results sharing, and publication, which
are articulated in a Memorandum of Understanding (see
Supporting Information).

Data sharing and governance

To obviate the need for sharing of individual
participant-level data and attendant data governance con-
siderations, the consortium has adopted a distributed
analysis model based on pre-planned meta-analysis of
summary-level data contributed by each participating
cohort study (Figure 3). Common analysis plans, methods
and analytical scripts for quality control, phenotype and
sub-phenotype derivation, and genetic association analyses
are implemented in each study by local analysts. The
resulting within-study summary data are then returned
to the coordinating centre for quality control and meta-
analysis. Meta-analysis is conducted at two independent
centres to enable validation of results. Following the
publication of results, summary data from HERMES
meta-analyses are published in full on the Cardiovascular
Disease Knowledge Portal (http://www.broadcvdi.org/).

Figure 2 Component phenotypes of heart failure (HF). Schematic representation of HF phenotypes across the life course that will be studied in HER-
MES. HF diagnosis is typically preceded by cardiometabolic risk factors and genetic susceptibility factors for endophenotypes of structural and func-
tional cardiac dysfunction. Circles on the left represent common structural endophenotypes, from top to bottom: normal ventricle, ventricle with
symmetric hypertrophy, ventricle with asymmetric (septal) hypertrophy, and dilated ventricle. The natural history of HF extends from the initial time
point of diagnosis (Dx) through a gradual decline with increasing episodes of worsening typically necessitating in-hospital care (decompensations) to-
wards terminal pump failure. Sudden death from arrhythmia may occur at any point. Heritable contributions have been described for both risk factors,
endophenotypes, HF onset, and HF progression.
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Heart failure phenotype definition

While formal, international definitions of HF are in use,2 case
definitions vary across participating studies, as do methods
for ascertainment, reflecting differences in study design and
data availability (Supporting Information, Table S1). The per-
formance of several HF ascertainment criteria in widespread
use has, however, been shown to be similar.24 For the initial
GWAS meta-analysis, a broad definition was used based on
physician adjudication, electronic health records-based phe-
notype algorithms, and corroborated self-report. Subsequent
studies will follow a stepwise strategy for phenotype defini-
tion to address HF subtypes based on aetiology, LVEF, and
disease progression (Figure 2). Mobilizing HF subtype data
from electronic health records, leveraging large genomic
biobanks, will be necessary to ensure sufficient statistical
power for subtype analysis, and this will be achieved through
the deployment of validated multi-modal rule-based pheno-
typing algorithms.25

Given the mortality associated with HF, inclusion of inci-
dent and prevalent cases in analyses may lead to attenuation
of effect estimates, due to survivorship or collider bias and in-
creased heterogeneity26,27; however, this bias is partially mit-
igated by the increased power associated with a larger
sample size that can be achieved when prevalent cases are
included.

Genotyping and imputation

Participants have been genotyped with a range of
genome-wide single nucleotide polymorphism (SNP) arrays
(Supporting Information, Table S1). All collaborating studies
conducted imputation from directly measured genotype
using public reference panels (1000 Genomes Project,

Haplotype Reference Consortium) or from local whole-
genome sequence-based reference panels; for each meta-
analysis project, genotype imputation was performed against
a common pre-specified reference panel. Phasing and
imputation were conducted using Eagle, MaCH, SHAPEIT,
minimac2, or IMPUTE2 software at the discretion of partici-
pating cohorts.

Approach to genetic analyses

For GWASs, the analysis plan specifies quality filters to be ap-
plied to the data and the regression models for association
testing. Once study-specific GWAS results have been
uploaded to the central analytic team, these datasets un-
dergo a second round of QC in order to identify and rectify
any study-specific issues, align effect alleles across studies,
and apply minor allele frequency and imputation quality fil-
ters, prior to meta-analysis. Analyses are conducted in paral-
lel at two independent sites and are subsequently reconciled.

In study-specific GWAS analyses, logistic regression or Cox
proportional hazards regression analyses are used, assuming
additive genetic effects. Models are adjusted for age, sex,
and principal components and family structure as appropriate
for individual cohorts. Analytical softwares are left to the dis-
cretion of individual cohorts and include genetest, ProbABEL,
mach2dat, QuickTest, PLINK2, SNPTEST, or R.

Quality controls of study-specific results are conducted ac-
cording to accepted guidance, as previously reported.28 In
brief, variant identifiers and alleles are harmonized using
the EasyQC tool and allele frequencies compared with the
European reference panel of the 1000 Genomes Project. Dis-
tributions of reported P-values are plotted against P-values
derived from Z-scores and reviewed, as well as distributions
of beta estimates and standard errors, and Manhattan plots.

Figure 3 International participation in HERMES and distributed analysis workflow. The HERMES consortium includes investigators from 12 countries
from North America and Europe. Activities are overseen by a scientific committee with representatives from each contributing cohort and an executive
committee. Common analysis plans are developed by the analysis group and deployed by participating studies. Meta-analysis is conducted by the anal-
ysis group and results shared with project working groups. Upon publication, the full genome-wide association summary estimates from meta-analysis
are made available publicly through the Cardiovascular Disease Knowledge Portal (http://www.broadcvdi.org/).
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Variants with low imputation quality (<0.5) and with ex-
treme betas and standard errors (>10) are excluded. Geno-
mic control is applied at the study level where genomic
inflation is identified (λGC > 1.1). Single-variant tests are lim-
ited to common and low-frequency variants (minor allele
frequency ≥ 1%).

Meta-analyses are conducted using inverse-variance
weighting using METAL software (https://genome.sph.
umich.edu/wiki/METAL_Documentation). Heterogeneity of
effect estimates across studies is evaluated from Cochrane’s
Q and I2 statistics. The contribution of cryptic population
structure to test statistics is estimated based on the linkage
disequilibrium score (LDSC) regression intercept (https://
github.com/bulik/ldsc). Statistical significance thresholds are
based on the Bonferroni adjustment for the number of tests
performed.

Power for statistical analyses

Power calculations for HF onset were based on R implemen-
tation of the widely used algorithms from the CaTS power
calculator for one-stage association studies, with power cal-
culations from the standard normal distribution.29 Power to
detect genome-wide significant associations (P < 5 × 10�8),
based on the current HERMES sample size for cases with cor-
responding control subjects, was calculated as a function of
effect allele frequency under different effect sizes (odds ra-
tios of 1.05, 1.1, 1.2, 1.3, 1.4, and 1.5 in additive models).
Similar power will apply to the reciprocal of the odds ra-
tios < 1.0 for protective alleles. Additive-model odds ratios
of identified common variants have typically been in the
range of 1.1–1.2, with larger studies further identifying even
smaller effects. Power calculations for HF mortality were
based on the survSNP package in R,30 included all cases,
and plotted similarly to HF onset. Power calculations were
conducted using the computing environment R Version
3.5.1 (R Core Team, Vienna, Austria), and results were plotted
using STATA Version 15 (StataCorp, College Station, Texas,
USA).

Study description

Participating studies

The HERMES consortium currently includes investigators
from 12 countries (Figure 3) including 7 industry partners,
representing 16 population-based cohorts, 1 hospital-based
electronic health record cohort, 9 case cohorts of which 6
with control samples, and 25 clinical trials of which 9 with
non-HF control samples (Supporting Information, Table S1).
Ten of the clinical trials of HF were conducted within the
NHLBI HF clinical research network. Detailed cohort

descriptions are provided in the Supporting Information. For
a continuously updated list of included cohorts, please refer
to the consortium webpage (www.hermesconsortium.org).

In aggregate, the 51 HERMES cohorts comprise 68 157
HF cases and 949 888 controls of European ancestry with
array-based genotyping (Supporting Information, Table S1).
Most of the 16 population-based cohorts identified cases
based on ICD codes in hospital registers (10 cohorts), while
a few had adjudicated events from patient records (4 co-
horts) or included re-exams (2 cohorts). Of the nine case
collections, seven were primarily focused on HF while two
identified HF cases from an at-risk population (COGEN
and LURIC). Of the 25 clinical trials, 17 had HF as inclusion
criterion, whereas 8 included broader groups of patients
with cardiometabolic diseases and identified HF from
adjudicated outcomes (three trials) or case report forms
(five trials).

Characteristics of participating studies

Baseline characteristics of the contributing studies are pre-
sented in Supporting Information, Table S2. As expected, clin-
ical trials typically included younger cases (median
age < 70 years in most trials) and had a lower burden of
co-morbid disease compared with population-based cohorts.
Risk factor distributions were largely as expected, with a par-
ticularly high burden of hypertension and coronary artery dis-
ease in all studies. Information on LVEF was available in a
subset of cohorts: 16 151 had LVEF < 40%, 4113 had LVEF
40–50%, and 9676 had LVEF > 50%, corresponding to HF
with reduced ejection fraction, HF with mid-range ejection
fraction, and HF with preserved ejection fraction.2

Follow-up times and mortality of HF cases are presented in
Supporting Information, Table S1. Overall, mortality among
HF cases was 27%; however, the duration of follow-up was
highly variable across studies, with median study follow-up
ranging from 1 to 116 months.

Genotypic information

Genotyping was conducted on different high-density SNP
platforms (Supporting Information, Table S1) and imputed
based on European ancestry imputation panels for up to
8 246 881 common or low-frequency variants (minor allele
frequency > 1%) in the combined dataset. Detailed sequence
data were available in at least 30 000 subjects from eight co-
horts with exome-wide coverage and 140 000 subjects from
six cohorts with whole-genome coverage (Supporting Infor-
mation, Table S1) and were planned or ongoing in several ad-
ditional cohorts.
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Statistical power

Power calculations were conducted based on all 68 157
cases described earlier for HF progression, with an average
mortality of 27%, and all cases with corresponding controls
for HF onset (949 888 controls, 44 016 cases). For HF risk,
HERMES is powered (>0.8) to detect effects down to odds
ratios of 1.10 for common variants (minor allele
frequency > 0.05) and 1.20 for low-frequency variants
(0.01–0.05) (Figure 4A). For HF mortality, HERMES is
powered to detect effects down to hazard ratios of 1.20
for variants with minor allele frequency > 0.08 and 1.40
for low-frequency variants (Figure 4B).

Discussion

With the recent exception of combination angiotensin
receptor blockade and neprilysin inhibition and sodium-
glucose transport protein 2 inhibitors, successful drug devel-
opment in HF has, for many years, been limited. Almost
all current therapies are repurposed from other indications
(e.g. angiotensin-converting enzyme inhibitors, beta-
blockers, and mineralocorticoid receptor antagonists for sys-
temic hypertension and sodium-glucose transport protein 2
inhibitors for T2DM) and may not directly target processes
leading to adverse cardiac remodelling. Human genetic
and genomic studies provide unique opportunities to ex-
plore the causal biology in patients; the HERMES consor-
tium provides a collaborative platform that enables these
approaches.

Heart failure is a broadly defined syndromic disorder with
diverse causes leading to a range of phenotypes. While this
complexity is mirrored in other common cardiovascular dis-
eases, such as coronary artery disease, heterogeneity is

particularly marked for HF. Beyond the scope of conventional
GWAS consortia, HERMES has a strong focus on the develop-
ment and clinical validation of multi-modal definitions for HF
in an effort to harmonize across different study designs and
healthcare contexts. It is recognized that existing clinical clas-
sifiers may not optimally enrich for common disease
mechanisms,18 and HERMES seeks new opportunities to dis-
sect out disease heterogeneity using genomic and data sci-
ence approaches.19 We describe a stepwise strategy for
phenotype definition, starting with the clinical syndrome of
HF and moving towards disease subtypes defined with preci-
sion. The approach allows for the definition of HF subtypes
based on our emerging understanding, without prior assump-
tions about disease stratification.18

A substantial number of individuals with Mendelian disor-
ders causing HF, such as dilated or hypertrophic cardiomyop-
athies, are included. We aim to develop polygenic scores for
HF and component traits that may be useful in anticipating
the likely penetrance and expression of rare variants associ-
ated with Mendelian cardiomyopathies. Inclusion of large
longitudinal studies, including clinical trials and electronic
health records-linked datasets, offers an opportunity to ex-
plore longitudinal phenotypes of HF onset and progression,
which are likely to be essential for clarifying the key underly-
ing causal mechanisms.

In future work, we aim to build on the HERMES collabora-
tive platform through more detailed harmonization of covar-
iates and imaging data across studies, enabling analysis at the
individual participant level or under a distributed analysis
model. Such a framework will enable the platform to support
analysis of emerging data-driven definitions of HF subtypes
with complex specifications, including those relating to
trajectories of disease. We plan to extend our collaborative
efforts to include other genome-scale molecular measure-
ments, including serum proteomics and metabolomics, and
to include populations with diverse ancestry.

Figure 4 Power estimates across the allele frequency spectrum for genome-wide association studies of heart failure risk and prognosis in HERMES.
Figure illustrating empirical power for detecting different genetic variant effect sizes by varying minor allele frequencies (MAF), for (A) heart failure
risk (odds ratio) and (B) heart failure prognosis (hazard ratio). Based on current HERMES sample size, with 949 888 controls compared with 44 016
cases for risk and 68 157 cases for prognosis.
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The emergence of large genetic studies linked to informa-
tion on HF and related traits presents an exciting opportunity
to explore the causal biology of this increasingly prevalent
disorder. HERMES provides a framework for scientific collab-
oration in support of this aim, bringing together relevant data
resources and leading domain experts to address this chal-
lenging phenotype. The collaboration is open; we invite inter-
ested patients, providers, and researchers to participate and
join in our efforts to inform new approaches to the preven-
tion and treatment of HF.
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