1,382 research outputs found

    A Study of Codes for Deep Space Telemetry

    Get PDF
    Computer simulation studies of codes applicable to deep space telemetry link

    An efficient coding system for deep space probes with specific application to Pioneer missions

    Get PDF
    One-half rate convolutional encoding with sequential decoding for deep space probe telemetry links with application to Pioneer mission

    The maritime boundaries of Queensland and New South Wales

    Get PDF

    The X-ray nebula of the filled center supernova remnant 3C58 and its interaction with the environment

    Full text link
    An \xmm observation of the plerionic supernova remnant 3C58 has allowed us to study the X-ray nebula with unprecedented detail. A spatially resolved spectral analysis with a resolution of 8\arcsec has yielded a precise determination of the relation between the spectral index and the distance from the center. We do not see any evidence for bright thermal emission from the central core. In contrast with previous ASCA and {\em Einstein} results, we derive an upper limit to the black-body 0.5-10 keV luminosity and emitting area of 1.8×10321.8\times 10^{32} \ergsec and 1.3×10101.3\times 10^{10} cm2^2, respectively, ruling out emission from the hot surface of the putative neutron star and also excluding the "outer-gap" model for hot polar caps. We have performed for the first time a spectral analysis of the outer regions of the X-ray nebula, where most of the emission is still non-thermal, but where the addition of a soft (kT=0.2-0.3 keV) optically thin plasma component is required to fit the spectrum at E<1E<1 keV. This component provides 6% of the whole remnant observed flux in the 0.5-10.0 keV band. We show that a Sedov interpretation is incompatible with the SN1181-3C58 association, unless there is a strong deviation from electron-ion energy equipartition, and that an origin of this thermal emission in terms of the expansion of the nebula into the ejecta core nicely fits all the radio and X-ray observations.Comment: 10 pages, 7 figures, accepted for publication in A&

    In-orbit Vignetting Calibrations of XMM-Newton Telescopes

    Full text link
    We describe measurements of the mirror vignetting in the XMM-Newton Observatory made in-orbit, using observations of SNR G21.5-09 and SNR 3C58 with the EPIC imaging cameras. The instrument features that complicate these measurements are briefly described. We show the spatial and energy dependences of measured vignetting, outlining assumptions made in deriving the eventual agreement between simulation and measurement. Alternate methods to confirm these are described, including an assessment of source elongation with off-axis angle, the surface brightness distribution of the diffuse X-ray background, and the consistency of Coma cluster emission at different position angles. A synthesis of these measurements leads to a change in the XMM calibration data base, for the optical axis of two of the three telescopes, by in excess of 1 arcminute. This has a small but measureable effect on the assumed spectral responses of the cameras for on-axis targets.Comment: Accepted by Experimental Astronomy. 26 pages, 18 figure

    Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels

    Get PDF
    Background: Cranial neural crest cells (NCCs) are a unique embryonic cell type which give rise to a diverse array of derivatives extending from neurons and glia through to bone and cartilage. Depending on their point of origin along the antero-posterior axis cranial NCCs are rapidly sorted into distinct migratory streams that give rise to axial specific structures. These migratory streams mirror the underlying segmentation of the brain with NCCs exiting the diencephalon and midbrain following distinct paths compared to those exiting the hindbrain rhombomeres (r). The genetic landscape of cranial NCCs arising at different axial levels remains unknown. Results: Here we have used RNA sequencing to uncover the transcriptional profiles of mouse cranial NCCs arising at different axial levels. Whole transcriptome analysis identified over 120 transcripts differentially expressed between NCCs arising anterior to r3 (referred to as r1-r2 migratory stream for simplicity) and the r4 migratory stream. Eight of the genes differentially expressed between these populations were validated by RT-PCR with 2 being further validated by in situ hybridisation. We also explored the expression of the Neuropilins (Nrp1 and Nrp2) and their co-receptors and show that the A-type Plexins are differentially expressed in different cranial NCC streams. Conclusions: Our analyses identify a large number of genes differentially regulated between cranial NCCs arising at different axial levels. This data provides a comprehensive description of the genetic landscape driving diversity of distinct cranial NCC streams and provides novel insight into the regulatory networks controlling the formation of specific skeletal elements and the mechanisms promoting migration along different paths.Rachael Lumb, Sam Buckberry, Genevieve Secker, David Lawrence and Quenten Schwar

    Soft X-ray excess emission in clusters of galaxies observed with XMM-Newton

    Get PDF
    We present results on the spectroscopic analysis of XMM-Newton EPIC data of the central 0.5/h_50 Mpc regions of the clusters of galaxies Coma, A1795 and A3112. The temperature of the hot intracluster gas as determined by modeling the 2 - 7 keV PN and MOS data is consistent with that inferred from the FeXXV-FeXXVI line ratio. A significant warm emission component at a level above the systematic uncertainties is evident in the data and confirmed by ROSAT PSPC data for Coma and A1795. The non-thermal origin of the phenomenon cannot be ruled out at the current level of calibration accuracy, but the thermal model fits the data significantly better, with temperatures in the range of 0.6 -- 1.3 keV and electron densities of the order of 10^{-4} -- 10^{-3} cm^{-3}. In the outer parts of the clusters the properties of the warm component are marginally consistent with the results of recent cosmological simulations, which predict a large fraction of the current epoch's bayons located in a warm-hot intergalactic medium (WHIM). However, the derived densities are too high in the cluster cores, compared to WHIM simulations, and thus more theoretical work is needed to fully understand the origin of the observed soft X-ray excess.Comment: ApJ in press, 14 pages, 4 color figures WHIM discussion modifie

    X-ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

    Get PDF
    The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of 200\sim 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of 4\sim 4 keV. The volume emission measure of any cool component (<1<1 keV) is less than a few % of the hot component at the cluster center. A strong OVIII Lyman-alpha line was detected with the RGS from the cluster core. The O abundance and its ratio to Fe at the cluster center is 0.2--0.5 and 0.5--1.5 times the solar value, respectively.Comment: Accepted: A&A Letters, 2001, 6 page

    Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras

    Full text link
    The second XMM-Newton serendipitous source catalogue, 2XMM, provides the ideal data base for performing a statistical evaluation of the flux cross-calibration of the XMM-Newton European Photon Imaging Cameras (EPIC). We aim to evaluate the status of the relative flux calibration of the EPIC cameras on board XMM-Newton (MOS1, MOS2, and pn) and investigate the dependence of the calibration on energy, position in the field of view of the X-ray detectors, and lifetime of the mission. We compiled the distribution of flux percentage differences for large samples of 'good quality' objects detected with at least two of the EPIC cameras. The mean offset of the fluxes and dispersion of the distributions was then found by Gaussian fitting. Count rate to flux conversion was performed with a fixed spectral model. The impact on the results of varying this model was investigated. Excellent agreement was found between the two EPIC MOS cameras to better than 4% from 0.2 keV to 12.0 keV. MOS cameras register 7-9% higher flux than pn below 4.5 keV and 10-13% flux excess above 4.5 keV. No evolution of the flux ratios is seen with time, except at energies below 0.5 keV, where we found a strong decrease in the MOS to pn flux ratio with time. This effect is known to be due to a gradually degrading MOS redistribution function. The flux ratios show some dependence on distance from the optical axis in the sense that the MOS to pn flux excess increases with off-axis angle. Furthermore, in the 4.5-12.0 keV band there is a strong dependence of the MOS to pn excess flux on the azimuthal-angle. These results strongly suggest that the calibration of the Reflection Grating Array (RGA) blocking factors is incorrect at high energies. Finally, we recommend ways to improve the calculation of fluxes in future versions of XMM-Newton source catalogues.Comment: 11 pages, 10 figures, 3 tables. Abridged Abstract. Accepted for publication in Astronomy and Astrophysic

    UV observations of the galaxy cluster Abell 1795 with the optical monitor on XMM-Newton

    Full text link
    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in Hα\alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation at the centre of this clusterComment: 6 pages, 3 figures accepted by A&A Letter
    corecore