44 research outputs found

    Single Color Centers Implanted in Diamond Nanostructures

    Get PDF
    The development of materials processing techniques for optical diamond nanostructures containing a single color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal. Individual NV centers are then isolated mechanically by dry etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1\mu m) implantation of individual NV centers into pre-fabricated diamond nanowire. The high single photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allows us to sustain strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure

    European Survey on Scholarly Practices and Digital Needs in the Arts and Humanities

    Get PDF
    This report summarizes the statistical analysis of the findings of a web-based survey conducted by the Digital Methods and Practices Observatory (DiMPO), a working group under VCC2 of the DARIAH research infrastructure (Digital Research Infrastructure for the Arts and Humanities). In order to provide an evidence-based, up-to-date, and meaningful account of the emerging information practices, needs and attitudes of arts and humanities researchers in the evolving European digital scholarly environment, the web survey involved a transnational team of researchers from more than a dozen countries, and addressed digitally-enabled research practices, attitudes and needs in all areas of Europe and across different arts and humanities disciplines and contexts

    Diamond optomechanical crystals

    Get PDF
    Cavity-optomechanical systems realized in single-crystal diamond are poised to benefit from its extraordinary material properties, including low mechanical dissipation and a wide optical transparency window. Diamond is also rich in optically active defects, such as the nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers, which behave as atom-like systems in the solid state. Predictions and observations of coherent coupling of the NV electronic spin to phonons via lattice strain has motivated the development of diamond nanomechanical devices aimed at realization of hybrid quantum systems, in which phonons provide an interface with diamond spins. In this work, we demonstrate diamond optomechanical crystals (OMCs), a device platform to enable such applications, wherein the co-localization of ~ 200 THz photons and few to 10 GHz phonons in a quasi-periodic diamond nanostructure leads to coupling of an optical cavity field to a mechanical mode via radiation pressure. In contrast to other material systems, diamond OMCs operating in the resolved-sideband regime possess large intracavity photon capacity (> 105^5) and sufficient optomechanical coupling rates to reach a cooperativity of ~ 20 at room temperature, allowing for the observation of optomechanically induced transparency and the realization of large amplitude optomechanical self-oscillations

    Electrically Tunable Valley Dynamics in Twisted WSe₂/WSe₂ Bilayers

    Get PDF
    The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe₂/WSe₂ bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40  ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∌80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom
    corecore