14 research outputs found

    ОПРЕДЕЛЕНИЕ АТМОСФЕРНОГО ВЛАГОСОДЕРЖАНИЯ ПО МЕТЕОРОЛОГИЧЕСКИМ И GPS-ДАННЫМ

    Get PDF
    The Global Positioning System (GPS) based on satellites and the networks of dual frequency receivers are actively used for geodetic and geophysical applications, as well as for studying the ionosphere and troposphere. The atmospheric water content is in the focus of research as a key parameter for determining of the accuracy of weather forecasting and hydrological monitoring. The precision of atmospheric water content calculations depends on the accuracy of determination of the delays of signals propagating from GPS satellites to ground-based GPS receivers when geodynamic measurements are conducted. This paper describes a technique that allows us to estimate the integrated water vapor (IWV) in the atmosphere from measurements of GPS satellite signal delays.We consider remote sensing of the lower atmosphere by GPS measurements to detect the water vapor content in the conventional vertical column to the top level of the troposphere (up to 12 km above the Earth's surface). In studies of the propagation of signals from GPS satellites to ground receivers, the atmospheric water vapor is taken into account as a ‘wet’ component (ZWD) of the zenith tropospheric delay (ZTD). ZTD is the sum of ZHD (hydrostatic or ‘dry’ delay) and ZWD (‘wet’ delay). ZWD values can be converted with a very high confidence in integrated water vapor (IWV) values for each installed GPS receiver.Система спутникового позиционирования GPS с использованием сетей двухчастотных приемников активно применяется не только для решения задач геодинамики, но и для исследования ионосферы и тропосферы. Особый интерес представляет оценка атмосферного влагосодержания, так как это один из ведущих параметров определения точности прогнозов погоды и гидрологического мониторинга. Точность оценки влагосодержания определяет точность оценки задержки GPS-сигнала при геодинамических измерениях. В работе описывается методика, позволяющая оценивать значение интегрального влагосодержания атмосферы по измеряемым фазовым задержкам сигнала спутников GPS.Рассматривается дистанционное зондирование нижней части атмосферы посредством GPS-измерений с целью определения содержания водяного пара в условном вертикальном столбе до уровня верхней части тропосферы (до 12 км над поверхностью Земли). Атмосферный водяной пар учитывается в процессе распространения сигналов от GPS-спутников до наземных приемников в виде «влажной» компоненты полной тропосферной задержки (ZWD). Полная тропосферная зенитная задержка (ZTD) является суммой «сухой», или гидростатической (ZHD), и «влажной» (ZWD) компонент. Данные по ZWD могут быть преобразованы с очень высокой достоверностью в данные по суммарному водяному пару (IWV) над каждым установленным GPS-приемником

    МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ И ПОЛЕ НАПРЯЖЕНИЙ МОНГОЛИИ И ПРИЛЕГАЮЩИХ ТЕРРИТОРИЙ

    Get PDF
    We have compiled and analyzed earthquake focal solutions for the territory of Mongolia and its surroundings in order to reveal a spatial variability of stress orientation and stress regimes of the crust. According to the stress inversion results, the SHmax is turning from W-E in the eastern Mongolia to SW-NE in the Gobi Altay and the central Mongolia, and then to S-N in the western part of the region. Comparison with data derived from GPS measurements shows that directions of the strain axes revealed by the geodetic and seismological observations are generally consistent. A contradiction is found for the Bolnai zone where results of GPS estimation indicate the predominance of extension (in the SE-NW direction), whereas earthquake data for the longer period of seismic observations reveal compression. Compression in this zone is mainly due to the Tsetserleg-Bolnai earthquakes contribution; however, a part of the recent data on focal mechanisms fits an extensional stress field with the NNW orientated extension axis. These data are in accordance with some published works which suggest a transtensive field from some structural geology studies in the eastern part of the Bolnai zone.The paper is supplemented with a list of M≥4.5 earthquake fault plane solutions and unpublished focal mechanisms for some M≤4.5 earthquakes of the northern Mongolia and the southern Baikal region.Введение. Механизмы очагов землетрясений наряду с геодезическими и другими данными служат источником информации о напряженно-деформированном состоянии земной коры. Задачи оценки тектонического режима и скорости деформирования особенно актуальны для внутриплитных областей, характеризующихся высоким уровнем сейсмичности. Одной из таких областей является Монголия, на территории которой известны землетрясения с М=8.0 (рис. 1). В представляемой работе собраны и проанализированы механизмы очагов землетрясений с M≥4.5 с целью проследить пространственную изменчивость поля напряжений земной коры. Данные. Опубликованные данные о фокальных решениях можно разделить на две группы в зависимости от применяемых для их определения методов. К первой группе относятся механизмы, полученные моделированием волновых форм на удаленных и региональных станциях. Вторая группа решений получена при использовании метода полярности первых вступлений волн. Данный метод широко применялся для умеренной силы землетрясений северной части Монголии и Южной Сибири, что обусловлено более плотным покрытием этого региона сейсмостанциями. Используемые для анализа в данной работе решения представлены в таблице (в разделе «Дополнительные материалы») и на карте (рис. 2). Методы. Для инверсии поля напряжений использовались два подхода. Для землетрясений основных сейсмических зон (Болнай, Гобийский Алтай, Могод и т.д.) применялась программа Win-Tensor [Delvaux, Sperner, 2003], в которой реализован метод right dihedra [Angelier, 1984]. Для получения более сглаженной по всей территории картины ориентации осей напряжений использовалась программа SATSI [Hardebeck, Michael, 2006], минимизирующая разницу между соседними «индивидуальными» стресс-тензорами для сейсмоактивных областей. Для более корректного сравнения сейсмологических данных с результатами GPS-измерений и визуализации сейсмотектонических деформаций представлены стереограммы средних фокальных механизмов [Nikitin, Yunga, 1977; Yunga, 1990]. Результаты. Полученные результаты показывают, что фокальные решения землетрясений южной, западной и восточной части Монголии однородны и представлены главным образом сдвиговыми и взбросовыми подвижками в очагах. Большим разнообразием кинематических типов разрывов характеризуется территория к северу от Болнайского разлома. Для непосредственно Болнайской зоны не удалось получить единого стресс-тензора. Выборка разделилась на главные толчки (Болнайское и Цэцэрлэгское землетрясения 1905 г.), состоящие из субисточников, и события, зарегистрированные в период инструментальных наблюдений. Последние показывают наличие в выборке решений, удовлетворяющих режиму растяжения. В целом, наблюдается изменение ориентации оси SHmax от направления Ю-С в западной части Монголии до ЮЗ-СВ в Гобийском Алтае и в центральной части страны и до широтного направления в Восточной Монголии. Обсуждение результатов. Очевидно, что основные характеристики поля напряжений на представленной территории уже выявлены и описаны в предшествующих работах [Zhalkovskii et al., 1995; Petit et al., 1996; Delvaux et al., 1998; Melnikova et al., 2004; Melnikova, Radziminovich, 2005; San’kov et al., 2005; Gol’din, Kuchai, 2007; Radziminovich et al., 2007; Parfeevets, San’kov, 2010; San’kov et al., 2011; Parfeevets, San’kov, 2012; Rebetsky et al., 2013; Tataurova et al., 2014; Kuchai, Kozina, 2015; Karagianni et al., 2015; и др.]. Все увеличивающийся объем новых данных, с одной стороны, подтверждает сделанные ранее выводы, а с другой – позволяет выявить некоторые детали. Результаты, полученные по сейсмологическим данным, согласуются с данными, полученными в ходе геолого-структурных работ [Parfeevets, Sankov, 2012] и GPS-измерений [Calais et al., 2003; Loukhnev et al., 2010]. Выделяется Болнайская зона, которая по геодезическим расчетам характеризуется деформацией удлинения земной коры или растяжением. Выше отмечалось, что часть фокальных механизмов соответствует такому полю напряжений. Более того, замеры трещиноватости также приводят авторов [Parfeevets, Sankov, 2012] к выводу о режиме транстенсии в восточной части Болнайской зоны, связанном, вероятно, с дивергенцией Евразийской и Амурской плит [Petit, Fournier, 2005]. Характер изменений сейсмотектонических деформаций в этом районе позволил авторам работы [Kuchai, Kozina, 2015] выделить, хоть и в широких пределах, границу Амурской плиты. По данным о землетрясениях с M≥7.0 была рассчитана скорость деформации по формуле Кострова (табл. 2). Для временного интервала в 100 лет она составила 1.12×1020 N m yr–1, что является высоким значением для внутриконтинентальных областей по сравнению с модельными значениями [Holt et al., 1995, 2000]. Очевидно, это связано с сильнейшими землетрясениями региона, произошедшими на протяжении небольшого интервала времени. Заключение. Карта фокальных механизмов и результаты инверсии поля тектонических напряжений могут быть полезны при сейсмотектоническом и геодинамическом анализе Центральной Азии. В разделе «Дополнительные материалы» приведена компиляционная таблица механизмов очагов землетрясений с M≥4.5 и ранее неопубликованные механизмы очагов землетрясений Северной Монголии и Южного Прибайкалья с M≤4.5

    Определение тропосферной рефракции над пунктами наблюдения IRKM (Иркутск), ULAZ (Улан-Удэ) и BADG (Бадары)

    Get PDF
    The article describes the possibility of using the passive satellite measurements of the atmosphere to investigate the vertical patterns of pressure, temperature and relative humidity and simulate the altitude dependence of the refractive index of air. The seasonal parameters were determined for the exponential model showing the tropospheric refraction over observation points IRKM (Irkutsk), ULAZ (Ulan-Ude) and BADG (Badary). Post-processing of the input GPS data was conducted to ensure the highest positioning accuracy. In addition to high-precision geodesy, the global positioning method was used for determining the total tropospheric zenith delays (ZTD), which values are used to solve the problems of radio physics and meteorology. The angles of refraction and the true distances were estimated and compared in different seasons of the year. This study shows that the angles of refraction at the observation points located in the Baikal zone do not differ significantly in order of magnitude from the values estimated for other climatic zones.Рассматривается возможность использования пассивной спутниковой локации атмосферы с целью получения данных вертикального распределения давления, температуры и относительной влажности для моделирования высотной зависимости показателя преломления воздуха. Получены сезонные параметры экспоненциальной модели тропосферной рефракции над пунктами наблюдения IRKM (Иркутск), ULAZ (Улан-Удэ) и BADG (Бадары). В результате постобработки первичных GPS-данных достигается максимальная точность позиционирования. Помимо высокоточной геодезии метод глобального позиционирования позволяет определять полную тропосферную зенитную задержку (ZTD), которая имеет приложения в задачах радиофизики и метеорологии. Выполнены сравнительные расчеты углов рефракции и истинного расстояния в разные сезоны года. Показано несущественное отличие углов рефракции по порядку величин в пунктах наблюдения Байкальской зоны от других климатических зон

    Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world\u27s greatest freshwater biodiversity in danger?

    Get PDF
    Ecological degradation of the benthic littoral zone is an emerging, urgent problem at Lake Baikal (East Siberia), the most species-rich lake on Earth. Within the last five years, multiple changes have occurred in the nearshore benthos where most of the lake\u27s endemic species reside. These changes include proliferation of benthic algae, deaths of snails and endemic sponges, large coastal wash-ups of dead benthic algae and macrophytes, blooms of toxin-producing benthic cyanobacteria, and inputs of industrial contaminants into parts of the lake. Some changes, such as massive coastal accumulations of benthic algae, are currently shared with the Laurentian Great Lakes (LGLs); however, the drivers of these changes differ between Lake Baikal and the LGLs. Coastal eutrophication from inputs of untreated sewage is causing problems at multiple sites in Lake Baikal, whereas in the LGLs, invasive dreissenid mussels redirect pelagic nutrients to the littoral substrate. At other locations in Lake Baikal, ecological degradation may have different causes including water level fluctuations and the input of toxic industrial contaminants. Importantly, the recent deterioration of the benthic littoral zone in both Lake Baikal and the LGLs has occurred while little change has occurred offshore. This highlights the necessity of monitoring both the littoral and pelagic zones of large lakes for assessing ecosystem health, change and conservation

    Determination of tropospheric refraction over observation points IRKM (Irkutsk), ULAZ (Ulan-Ude) and BADG (Badary)

    Get PDF
    The article describes the possibility of using the passive satellite measurements of the atmosphere to investigate the vertical patterns of pressure, temperature and relative humidity and simulate the altitude dependence of the refractive index of air. The seasonal parameters were determined for the exponential model showing the tropospheric refraction over observation points IRKM (Irkutsk), ULAZ (Ulan-Ude) and BADG (Badary). Post-processing of the input GPS data was conducted to ensure the highest positioning accuracy. In addition to high-precision geodesy, the global positioning method was used for determining the total tropospheric zenith delays (ZTD), which values are used to solve the problems of radio physics and meteorology. The angles of refraction and the true distances were estimated and compared in different seasons of the year. This study shows that the angles of refraction at the observation points located in the Baikal zone do not differ significantly in order of magnitude from the values estimated for other climatic zones

    THE DETERMINATION OF ATMOSPHERIC WATER CONTENT FROM METEOROLOGICAL AND GPS DATA

    No full text
    The Global Positioning System (GPS) based on satellites and the networks of dual frequency receivers are actively used for geodetic and geophysical applications, as well as for studying the ionosphere and troposphere. The atmospheric water content is in the focus of research as a key parameter for determining of the accuracy of weather forecasting and hydrological monitoring. The precision of atmospheric water content calculations depends on the accuracy of determination of the delays of signals propagating from GPS satellites to ground-based GPS receivers when geodynamic measurements are conducted. This paper describes a technique that allows us to estimate the integrated water vapor (IWV) in the atmosphere from measurements of GPS satellite signal delays.We consider remote sensing of the lower atmosphere by GPS measurements to detect the water vapor content in the conventional vertical column to the top level of the troposphere (up to 12 km above the Earth's surface). In studies of the propagation of signals from GPS satellites to ground receivers, the atmospheric water vapor is taken into account as a ‘wet’ component (ZWD) of the zenith tropospheric delay (ZTD). ZTD is the sum of ZHD (hydrostatic or ‘dry’ delay) and ZWD (‘wet’ delay). ZWD values can be converted with a very high confidence in integrated water vapor (IWV) values for each installed GPS receiver

    FOCAL MECHANISMS OF EARTHQUAKES AND STRESS FIELD OF THE CRUST IN MONGOLIA AND ITS SURROUNDINGS

    No full text
    We have compiled and analyzed earthquake focal solutions for the territory of Mongolia and its surroundings in order to reveal a spatial variability of stress orientation and stress regimes of the crust. According to the stress inversion results, the SHmax is turning from W-E in the eastern Mongolia to SW-NE in the Gobi Altay and the central Mongolia, and then to S-N in the western part of the region. Comparison with data derived from GPS measurements shows that directions of the strain axes revealed by the geodetic and seismological observations are generally consistent. A contradiction is found for the Bolnai zone where results of GPS estimation indicate the predominance of extension (in the SE-NW direction), whereas earthquake data for the longer period of seismic observations reveal compression. Compression in this zone is mainly due to the Tsetserleg-Bolnai earthquakes contribution; however, a part of the recent data on focal mechanisms fits an extensional stress field with the NNW orientated extension axis. These data are in accordance with some published works which suggest a transtensive field from some structural geology studies in the eastern part of the Bolnai zone.The paper is supplemented with a list of M≥4.5 earthquake fault plane solutions and unpublished focal mechanisms for some M≤4.5 earthquakes of the northern Mongolia and the southern Baikal region
    corecore