128 research outputs found

    The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy

    Get PDF
    Many transformed cells exhibit altered glucose metabolism and increased utilization of glutamine for anabolic and bioenergetic processes. These metabolic adaptations, which accompany tumorigenesis, are driven by oncogenic signals. Here we report that the transcription factor c-Jun, product of the proto-oncogene JUN, is a key regulator of mitochondrial glutaminase (GLS) levels. Activation of c-Jun downstream of oncogenic Rho GTPase signalling leads to elevated GLS gene expression and glutaminase activity. In human breast cancer cells, GLS protein levels and sensitivity to GLS inhibition correlate strongly with c-Jun levels. We show that c-Jun directly binds to the GLS promoter region, and is sufficient to increase gene expression. Furthermore, ectopic overexpression of c-Jun renders breast cancer cells dependent on GLS activity. These findings reveal a role for c-Jun as a driver of cancer cell metabolic reprogramming, and suggest that cancers overexpressing JUN may be especially sensitive to GLS-targeted therapies

    Re-engineering a NiFe hydrogenase to increase the H2 production bias while maintaining native levels of O2 tolerance

    Get PDF
    Naturally occurring oxygen tolerant NiFe membrane bound hydrogenases have a conserved catalytic bias towards hydrogen oxidation which limits their technological value. We present an Escherichia coli Hyd-1 amino acid exchange that apparently causes the catalytic rate of H2 production to double but does not impact the O2 tolerance

    Liver-Type Glutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer

    Get PDF
    Efforts to target glutamine metabolism for cancer therapy have focused on the glutaminase isozyme GLS. The importance of the other isozyme, GLS2, in cancer has remained unclear, and it has been described as a tumor suppressor in some contexts. Here, we report that GLS2 is upregulated and essential in luminal-subtype breast tumors, which account for >70% of breast cancer incidence. We show that GLS2 expression is elevated by GATA3 in luminal-subtype cells but suppressed by promoter methylation in basal-subtype cells. Although luminal breast cancers resist GLS-selective inhibitors, we find that they can be targeted with a dual-GLS/GLS2 inhibitor. These results establish a critical role for GLS2 in mammary tumorigenesis and advance our understanding of how to target glutamine metabolism in cancer

    Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia

    Get PDF
    An elevated neutrophil–lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy

    Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF).

    Get PDF
    PURPOSE: There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18F-FDG-PET/ CT to predict mortality in IPF. METHODS: A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18F-FDG-PET/CT. The overall maximum pulmonary uptake of 18F-FDG (SUVmax), the minimum pulmonary uptake or background lung activity (SUVmin), and target-to-background (SUVmax/ SUVmin) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18F-FDG-PET measurements and GAP score for risk stratification in IPF patients. RESULTS: During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p  4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. CONCLUSIONS: A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients

    HR‐pQCT measures of bone microarchitecture predict fracture : systematic review and meta‐analysis

    Get PDF
    HR‐pQCT is a non‐invasive imaging modality for assessing volumetric bone mineral density (vBMD) and microarchitecture of cancellous and cortical bone. The objective was to (i) assess fracture‐associated differences in HR‐pQCT bone parameters and (ii) to determine if HR‐pQCT is sufficiently precise to reliably detect these differences in individuals. We systematically identified 40 studies that used HR‐pQCT (39/40 used XtremeCT scanners) to assess 1291‐3253 and 3389‐10,687 individuals with and without fractures, respectively, ranging in age from 10.9 to 84.7 years with no comorbid conditions. Parameters describing radial and tibial bone density, microarchitecture, and strength were extracted and percentage differences between fracture and control subjects were estimated using a random effects meta‐analysis. An additional meta‐analysis of short‐term in vivo reproducibility of bone parameters assessed by XtremeCT was conducted to determine whether fracture‐associated differences exceeded the least significant change (LSC) required to discern measured differences from precision error. Radial and tibial HR‐pQCT parameters, including failure load, were significantly altered in fracture subjects, with differences ranging from −2.6% (95% CI: −3.4 to −1.9) in radial cortical vBMD to −12.6% (95% CI: −15.0 to −10.3) in radial trabecular vBMD. Fracture‐associated differences reported by prospective studies were consistent with those from retrospective studies, indicating that HR‐pQCT can predict incident fracture. Assessment of study quality, heterogeneity and publication biases verified the validity of these findings. Finally, we demonstrated that fracture‐associated deficits in total and trabecular vBMD, and certain tibial cortical parameters, can be reliably discerned from HR‐pQCT‐related precision error and can be used to detect fracture‐associated differences in individual patients. Although differences in other HR‐pQCT measures, including failure load, were significantly associated with fracture, improved reproducibility is needed to ensure reliable individual cross‐sectional screening and longitudinal monitoring. In conclusion, our study supports the use of HR‐pQCT in clinical fracture prediction

    The Structure of Hydrogenase-2 from <i>Escherichia coli</i>:Implications for H<sub>2</sub> -Driven Proton Pumping

    Get PDF
    Under anaerobic conditions Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from H2 oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly-bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein, HybB. To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In this paper we describe a new over-expression system that has facilitated determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex

    Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    Get PDF
    Purpose: Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Methods: Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). Results: The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). Conclusion: IPF patients have increased pulmonary uptake of 18F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. © 2013 The Author(s)

    Clinical quantification of the integrin αvβ6 by [18F]FB-A20FMDV2 positron emission tomography in healthy and fibrotic human lung (PETAL Study)

    Get PDF
    © 2019, The Author(s). Purpose: The RGD-integrin, αvβ6, plays a role in the pathogenesis of pulmonary fibrosis through activation of transforming growth factor beta (TGFβ). This study sought to quantify expression of αvβ6 in the lungs of healthy humans and subjects with pulmonary fibrosis using the αvβ6-selective [18F]FB-A20FMDV2 PET ligand. Methods: [18F]FB-A20FMDV2 PET/CT scans were performed in healthy subjects and those with fibrotic lung disease. Standard uptake values (SUV) and volume of distribution (VT) were used to quantify αvβ6 expression. In subjects with fibrotic lung disease, qualitative assessment of the relationship between αvβ6 expression and the distribution of fibrosis on high resolution computed tomography was conducted. Results: A total of 15 participants (6 healthy, 7 with idiopathic pulmonary fibrosis (IPF) and 2 with connective tissue disease (CTD) associated PF) were enrolled. VT and SUV of [18F]FB-A20FMDV2 were increased in the lungs of subjects with pulmonary fibrosis (PF) compared with healthy subjects. Geometric mean VT (95% CI) was 0.88 (0.60, 1.29) mL/cm3 for healthy subjects, and 1.40 (1.22, 1.61) mL/cm3 for subjects with IPF; and SUV was 0.54 (0.36, 0.81) g/mL for healthy subjects and 1.03 (0.86, 1.22) g/mL for subjects with IPF. The IPF/healthy VT ratio (geometric mean, (95% CI of ratio)) was 1.59 (1.09, 2.32) (probability ratio > 1 = 0.988)) and the SUV ratio was 1.91 (1.27, 2.87) (probability ratio > 1 = 0.996). Increased uptake of [18F]FB-A20FMDV2 in PF was predominantly confined to fibrotic areas. [18F]FB-A20FMDV2 measurements were reproducible at an interval of 2 weeks. [18F]FB-A20FMDV2 was safe and well tolerated. Conclusions: Lung uptake of [18F]FB-A20FMDV2, a measure of expression of the integrin αvβ6, was markedly increased in subjects with PF compared with healthy subjects
    corecore