11 research outputs found

    Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration.

    Get PDF
    Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}

    Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    Get PDF
    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe

    Assessment of simulation predictions of hydrocarbon pool fire tests.

    No full text
    An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior

    Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    No full text
    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity
    corecore