21 research outputs found
Neutral and Cationic Rare Earth Metal Alkyl and Benzyl Compounds with the 1,4,6-Trimethyl-6-pyrrolidin-1-yl-1,4-diazepane Ligand and Their Performance in the Catalytic Hydroamination/Cyclization of Aminoalkenes
A new neutral tridentate 1,4,6-trimethyl-6-pyrrolidin-1-yl-1,4-diazepane (L) was prepared. Reacting L with trialkyls M(CH2SiMe3)3(THF)2 (M = Sc, Y) and tribenzyls M(CH2Ph)3(THF)3 (M = Sc, La) yielded trialkyl complexes (L)M(CH2SiMe3)3 (M = Sc, 1; M = Y, 2) and tribenzyl complexes (L)M(CH2Ph)3 (M = Sc, 3; M = La, 4). Complexes 1 and 2 can be converted to their corresponding ionic compounds [(L)M(CH2SiMe3)2(THF)][B(C6H5)4] (M = Sc, Y) by reaction with [PhNMe2H][B(C6H5)4] in THF. Complexes 3 and 4 can be converted to cationic species [(L)M(CH2Ph)2]+ by reaction with [PhNMe2H][B(C6F5)4] in C6D5Br in the absence of THF. The neutral complexes 1-4 and their cationic derivatives were studied as catalysts for the hydroamination/cyclization of 2,2-diphenylpent-4-en-1-amine and N-methylpent-4-en-1-amine reference substrates and compared with ligand-free Sc, Y, and La neutral and cationic catalysts. The most effective catalysts in the series were the cationic L-yttrium catalyst (for 2,2-diphenylpent-4-en-1-amine) and the cationic lanthanum systems (for N-methylpent-4-en-1-amine). For the La catalysts, evidence was obtained for release of L from the metal during catalysis.
Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer
<p>Abstract</p> <p>Background</p> <p>The incidence of breast cancer has doubled over the past 20 years in the Czech Republic. Hereditary factors may be a cause of young onset, bilateral breast or ovarian cancer, and familial accumulation of the disease. <it>BRCA1 </it>and <it>BRCA2 </it>mutations account for an important fraction of hereditary breast and ovarian cancer cases. One thousand and ten unrelated high-risk probands with breast and/or ovarian cancer were analysed for the presence of a <it>BRCA1 </it>or <it>BRCA2 </it>gene mutation at the Masaryk Memorial Cancer Institute (Czech Republic) during 1999–2006.</p> <p>Methods</p> <p>The complete coding sequences and splice sites of both genes were screened, and the presence of large intragenic rearrangements in <it>BRCA1 </it>was verified. Putative splice-site variants were analysed at the cDNA level for their potential to alter mRNA splicing.</p> <p>Results</p> <p>In 294 unrelated families (29.1% of the 1,010 probands) pathogenic mutations were identified, with 44 different <it>BRCA1 </it>mutations and 41 different <it>BRCA2 </it>mutations being detected in 204 and 90 unrelated families, respectively. In total, three <it>BRCA1 </it>founder mutations (c.5266dupC; c.3700_3704del5; p.Cys61Gly) and two <it>BRCA2 </it>founder mutations (c.7913_7917del5; c.8537_8538del2) represent 52% of all detected mutations in Czech high-risk probands. Nine putative splice-site variants were evaluated at the cDNA level. Three splice-site variants in <it>BRCA1 </it>(c.302-3C>G; c.4185G>A and c.4675+1G>A) and six splice-site variants in <it>BRCA2 </it>(c.475G>A; c.476-2>G; c.7007G>A; c.8755-1G>A; c.9117+2T>A and c.9118-2A>G) were demonstrated to result in aberrant transcripts and are considered as deleterious mutations.</p> <p>Conclusion</p> <p>This study represents an evaluation of deleterious genetic variants in the <it>BRCA1 </it>and <it>2 </it>genes in the Czech population. The classification of several splice-site variants as true pathogenic mutations may prove useful for genetic counselling of families with high risk of breast and ovarian cancer.</p
IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function 1?4 . However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer?an aggressive malignancy that is refractory to standard treatments and current immunotherapies 5?8 ?induces endoplasmic reticulum stress and activates the IRE1α?XBP1 arm of the unfolded protein response 9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α?XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α?XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α?XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.Fil: Song, Minkyung. Weill Cornell Medicine; Estados UnidosFil: Sandoval, Tito A.. Weill Cornell Medicine; Estados UnidosFil: Chae, Chang-Suk. Weill Cornell Medicine; Estados UnidosFil: Chopra, Sahil. Weill Cornell Medicine; Estados UnidosFil: Tan, Chen. Weill Cornell Medicine; Estados UnidosFil: Rutkowski, Melanie R.. University of Virginia; Estados UnidosFil: Raundhal, Mahesh. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Chaurio, Ricardo A.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Payne, Kyle K.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Konrad, Csaba. Weill Cornell Medicine; Estados UnidosFil: Bettigole, Sarah E.. Quentis Therapeutics Inc.; Estados UnidosFil: Shin, Hee Rae. Quentis Therapeutics Inc.; Estados UnidosFil: Crowley, Michael J. P.. Weill Cornell Graduate School of Medical Sciences; Estados UnidosFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute; Estados UnidosFil: Motorykin, Ievgen. Weill Cornell Medicine,; Estados UnidosFil: Zhang, Sheng. Weill Cornell Medicine,; Estados UnidosFil: Manfredi, Giovanni. Weill Cornell Medicine,; Estados UnidosFil: Zamarin, Dmitriy. Memorial Sloan Kettering Cancer Center; Estados UnidosFil: Holcomb, Kevin. Weill Cornell Medicine,; Estados UnidosFil: Rodriguez, Paulo C.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Conejo Garcia, Jose R.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Glimcher, Laurie H.. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Cubillos-Ruiz, Juan R.. Weill Graduate School Of Medical Sciences; Estados Unidos. Weill Graduate School Of Medical Sciences; Estados Unido