1,959 research outputs found

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Action of liproprotein lipase on apoprotein-depleted chylomicrons

    Full text link

    Theory of phase-locking in generalized hybrid Josephson junction arrays

    Full text link
    A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid Josephson junction arrays is extended to a class of generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as well as an inductive component. This class of arrays is of special interest, because the internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we obtain formulas for the flux-dependent frequency including flux-induced switching processes between the in-phase and anti-phase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.

    Effect of Spin–Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes.

    Get PDF
    Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin–phonon computations support the role of spin–orbit coupling in modulating spin–phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin–orbit coupling interactions leads to increased spin–vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules
    • …
    corecore