93 research outputs found

    Oddballs and a Low Odderon Intercept

    Get PDF
    We report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model for the odd signature JPC (P=C= -1) glueball states (oddballs). The trajectory intercept is clearly smaller than the pomeron and even the omega trajectory's intercept which provides an explanation for the nonobservation of the odderon in high energy scattering data. To further support this result we compare to glueball lattice data and also perform calculations with an alternative model based upon an exact Hamiltonian diagonalization for three constituent gluons.Comment: 4 pages, 2 figures, 1 tabl

    New limits on "odderon" amplitudes from analyticity constraints

    Full text link
    In studies of high energy pppp and pˉp\bar pp scattering, the odd (under crossing) forward scattering amplitude accounts for the difference between the pppp and pˉp\bar pp cross sections. Typically, it is taken as f−=−p4πDsα−1eiπ(1−α)/2f_-=-\frac{p}{4\pi}Ds^{\alpha-1}e^{i\pi(1-\alpha)/2} (α∌0.5\alpha\sim 0.5), which has Δσ,Δρ→0\Delta\sigma, \Delta\rho\to0 as s→∞s\to\infty, where ρ\rho is the ratio of the real to the imaginary portion of the forward scattering amplitude. However, the odd-signatured amplitude can have in principle a strikingly different behavior, ranging from having Δσ→\Delta\sigma\tonon-zero constant to having Δσ→ln⁥s/s0\Delta\sigma \to \ln s/s_0 as s→∞s\to\infty, the maximal behavior allowed by analyticity and the Froissart bound. We reanalyze high energy pppp and pˉp\bar pp scattering data, using new analyticity constraints, in order to put new and precise limits on the magnitude of ``odderon'' amplitudes.Comment: 13 pages LaTex, 6 figure

    A classical Odderon in QCD at high energies

    Full text link
    We show that the weight functional for color sources in the classical theory of the Color Glass Condensate includes a term which generates Odderon excitations. Remarkably, the classical origin of these excitations can be traced to the random walk of partons in the two dimensional space spanned by the SU(3) Casimirs. This term is naturally suppressed for a large nucleus at high energies.Comment: 19 pages. No figur

    Lattice approach to high-energy hadron-hadron scattering

    Full text link
    We discuss the non perturbative approach to the problem of high-energy hadron-hadron (dipole-dipole) scattering at low momentum transfer by means of numerical simulations in Lattice Gauge Theory.Comment: 4 pages, 5 figures, LaTeX with espcrc2.sty (v. 2.7). To appear in the proceedings of the 14th International QCD Conference (QCD 08), Montpellier, France, 7-12 July 200

    Elastic pppp and pˉp\bar pp scattering in the models of unitarized pomeron

    Full text link
    Elastic scattering amplitudes dominated by the Pomeron singularity which obey the principal unitarity bounds at high energies are constructed and analyzed. Confronting the models of double and triple (at t=0t=0) Pomeron pole (supplemented by some terms responsible for the low energy behaviour) with existing experimental data on pppp and pˉp\bar pp total and differential cross sections at s≄5\sqrt{s}\geq 5 GeV and ∣tâˆŁâ‰€6|t|\leq 6 GeV2^{2} we are able to tune the form of the Pomeron singularity. Actually the good agreement with those data is received for both models though the behaviour given by the dipole model is more preferable in some aspects. The predictions made for the LHC energy values display, however, the quite noticeable difference between the predictions of models at t≈−0.4t\approx -0.4 GeV2^{2}. Apparently the future results of TOTEM will be more conclusive to make a true choice.Comment: Revtex4, 8 pages, 5 figures. Text is improved, no changes in figures and conclusions. Version to be published in Phys. Rev.

    Heisenberg's Universal (lns)**2 Increase of Total Cross Sections

    Get PDF
    The (lns)**2 behaviour of total cross-sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. In this paper we present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-section data.Comment: 6 pages, 3 figure

    A simple recipe to detect possible C-Odd effects in high energy pˉp\bar p p and pppp

    Full text link
    We provide a theorem to suggest that t=0t=0 data may already be sufficient to detect possible asymptotic C-odd (Odderon) contributions. This can be done by comparing pˉp\bar p p and pppp t=0t=0 observables such as total cross sections, forward angular distributions and ratios of real to imaginary forward amplitudes for which well defined model independent correlations {must} exist which could already show up at RHIC energy but definitely at LHC energies.Comment: 10 pages in TeX, no figur

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    Asymptotic Energy Dependence of Hadronic Total Cross Sections from Lattice QCD

    Full text link
    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Wilson-loop correlation functions from Euclidean to Minkowskian theory, allows to investigate the asymptotic energy dependence of hadron-hadron total cross sections in lattice QCD. In this paper we will show, using best fits of the lattice data with proper functional forms satisfying unitarity and other physical constraints, how indications emerge in favor of a universal asymptotic high-energy behavior of the kind B log^2 s for hadronic total cross sections.Comment: Revised and extended version; 29 pages, 4 figure
    • 

    corecore