13 research outputs found

    Modifying effects of lactoferrin in vitro on molecular phenotype of human breast cancer cells

    No full text
    Aim: To assess the role of endogenous lactoferrin (LF) in the formation of the molecular phenotype of human breast cancer (BC) cell lines with varying degrees of malignancy, including cisplatin/doxorubicin resistant cell lines, and identify possible impact of exogenous LF. Materials and Methods: 5 breast cell lines of different origin — MCF-10 A, MCF-7, including doxorubicin/cisplatin resistant ones, T47D, MDA-MB-231, and MDA-MB-468. Immunocytochemistry: expression of LF, Ki-67, adhesion molecules E- and N-cadherin, CD44, CD24 rating the invasive potential of cells. Results: Expression of LF in human BC cell lines varies. It is associated with the heterogeneity of molecular profiles of cell lines in terms of adhesion. A link has been established between the level of LF expression in the resistant cell line MCF-7/CP and MCF-7/Dox, features of their molecular profile and invasive properties. Exogenous LF was shown to be capable of modifying the molecular profile and invasive properties of all the studied cell lines including resistant ones (MCF-7/CP and MCF-7/Dox). Conclusions: The sensitivity of cytostatic-resistant cell lines (MCF-7/CP and MCF-7/Dox) tends to increase under the influence of exogenous LF. It is likely that this effect is due to LF-mediated inhibition of the expression of proteins associated with drug resistance. Key Words: lactoferrin, cell lines of human breast cancer, molecular phenotype, proliferative activity, invasive potential, adhesion molecules

    Influence of exogenous lactoferrin on the oxidant/ antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro

    No full text
    Aim: To investigate the mechanisms of cytotoxic activity and pro-/antioxidant effect of lactoferrin on hormone receptor-positive and receptor-negative breast cancer cells in vitro. Materials and Methods: The study was performed on receptor-positive (MCF-7, T47D) and receptor-negative (MDA-MB-231, MDA-MB-468) human breast cancer cell lines. Immunocytochemical staining, flow cytometry, low-temperature electron paramagnetic resonance, and the Comet assay were used. Results: Upon treatment with lactoferrin, the increased levels of reactive oxygen species (ROS) (p < 0.05), NO generation rate by inducible NO-synthase (p < 0.05) and the level of “free” iron (p < 0.05) were observed. Moreover, the effects of lactoferrin were more pronounced in receptor-negative MDA-MB-231 and MDA-MB-468 cells. These changes resulted in increased expression of proapoptotic Bax protein (p < 0.05), reduced expression of the antiapoptotic Bcl-2 protein (p < 0.05) and level of not-oxidized mitochondrial cardiolipin (1.4–1.7-fold, p < 0.05). This, in turn, caused an increase in the percentage of apoptotic cells (by 14–24%, p < 0.05). Cytotoxic effects of lactoferrin were accompanied by an increase in the percentage of DNA in the comet tail and blocking cell cycle at G₂/M phase, especially in receptor-negative cell lines. Conclusion: The study showed that exogenous lactoferrin causes a violation of an antioxidant balance by increasing the level of ROS, “free” iron and NO generation rate, resalting in the blocking of cell cycle at G₂/M-phase and apoptosis of malignant cells

    Effect of long-term feeding of soy-bean fodder additions on the level of protein S100В and interleukin-6 in rat brain

    No full text
    It is established that long feeding of rats with traditional or transgenic soy beans provokes the manifestation of their aggression, which is associated with the increase of the level of protein S100В and the decrease of the level of IL-6 in rat brain

    MODIFYING EFFECTS OF LACTOFERRIN IN VITRO ON MOLECULAR PHENOTYPE OF HUMAN BREAST CANCER CELLS

    No full text
    Aim: To assess the role of endogenous lactoferrin (LF) in the formation of the molecular phenotype of human breast cancer (BC) cell lines with varying degrees of malignancy, including cisplatin/doxorubicin resistant cell lines, and identify possible impact of exogenous LF. Materials and Methods: 5 breast cell lines of different origin — MCF-10 A, MCF-7, including doxorubicin/cisplatin resistant ones, T47D, MDA-MB-231, and MDA-MB-468. Immunocytochemistry: expression of LF, Ki-67, adhesion molecules E- and N-cadherin, CD44, CD24 rating the invasive potential of cells. Results: Expression of LF in human BC cell lines varies. It is associated with the heterogeneity of molecular profiles of cell lines in terms of adhesion. A link has been established between the level of LF expression in the resistant cell line MCF-7/CP and MCF-7/Dox, features of their molecular profile and invasive properties. Exogenous LF was shown to be capable of modifying the molecular profile and invasive properties of all the studied cell lines including resistant ones (MCF-7/CP and MCF-7/Dox). Conclusions: The sensitivity of cytostatic-resistant cell lines (MCF-7/CP and MCF-7/Dox) tends to increase under the influence of exogenous LF. It is likely that this effect is due to LF-mediated inhibition of the expression of proteins associated with drug resistance. Key Words: lactoferrin, cell lines of human breast cancer, molecular phenotype, proliferative activity, invasive potential, adhesion molecules

    INFLUENCE OF EXOGENOUS LACTOFERRIN ON THE OXIDANT/ ANTIOXIDANT BALANCE AND MOLECULAR PROFILE OF HORMONE RECEPTOR-POSITIvE AND -NEGATIvE HUMAN BREAST CANCER CELLS IN VITRO

    No full text
    Aim: To investigate the mechanisms of cytotoxic activity and pro-/antioxidant effect of lactoferrin on hormone receptor-positive and receptor-negative breast cancer cells in vitro. Materials and Methods: The study was performed on receptor-positive (MCF-7, T47D) and receptor-negative (MDA-MB-231, MDA-MB-468) human breast cancer cell lines. Immunocytochemical staining, flow cytometry, low-temperature electron paramagnetic resonance, and the Comet assay were used. Results: Upon treatment with lactoferrin, the increased levels of reactive oxygen species (ROS) (p < 0.05), NO generation rate by inducible NO-synthase (p < 0.05) and the level of “free” iron (p < 0.05) were observed. Moreover, the effects of lactoferrin were more pronounced in receptor-negative MDA-MB-231 and MDA-MB-468 cells. These changes resulted in increased expression of proapoptotic Bax protein (p < 0.05), reduced expression of the antiapoptotic Bcl-2 protein (p < 0.05) and level of not-oxidized mitochondrial cardiolipin (1.4–1.7-fold, p < 0.05). This, in turn, caused an increase in the percentage of apoptotic cells (by 14–24%, p < 0.05). Cytotoxic effects of lactoferrin were accompanied by an increase in the percentage of DNA in the comet tail and blocking cell cycle at G₂/M phase, especially in receptor-negative cell lines. Conclusion: The study showed that exogenous lactoferrin causes a violation of an antioxidant balance by increasing the level of ROS, “free” iron and NO generation rate, resalting in the blocking of cell cycle at G₂/M-phase and apoptosis of malignant cells

    Cell technologies in cardiology

    No full text
    The treatment of congestive heart failure (CHF) is leading problem of the Health Care in our time. The principal achievement of two recent decades: not only to treat symptoms of decompensation but also to try to decelerate progression of the disease. All current methods of therapy for CHF, which are aimed just at improving the prognosis of disease, can be subdivided into several principal groups: 1) blockade of cardiomyocyte death; 2) improvement of the heart pump function; 3) decrease of heart remodeling; and 4) increase in the volume of viable myocardium. The article has been showing modem points of view on each of the above-mentioned fields
    corecore