63 research outputs found

    Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide

    Get PDF
    Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring

    Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    Get PDF
    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of, the active center is indispensable. We. present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support With potential Impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy,we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal-ligand bonding interaction and completes the study by providing an Illustrative electrostatic.. model relevant for ionic metalorganic agent molecules, in general

    Corrosion protection of metal surfaces by atmospheric pressure plasma jet treatment

    Full text link
    In this paper the corrosion protection of silicon-organic coatings applied by an atmospheric pressure plasma jet system was studied on copper (Cu) and aluminium (Al). The influence of a plasma pre-treatment on the defect density and the adhesion of the subsequently deposited plasmapolymer coating are presented. The quality of the coating was studied via visualization of defects by means of silver precipitation. Use of a reductive gas mixture for the plasma pre-treatment led to a significant reduction of the defect density. Additionally, the implementation of chromate-free corrosion inhibitors in the plasmapolymer layer enables an active corrosion protection of Al surfaces
    corecore