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ABSTRACT: Electron beam-induced surface activation (EBISA) has been used to grow o o
wires of iron on rutile TiO,(110)-(1 X 1) in ultrahigh vacuum. The wires have a width <
down to ~20 nm and hence have potential utility as interconnects on this dielectric
substrate. Wire formation was achieved using an electron beam from a scanning electron
microscope to activate the surface, which was subsequently exposed to Fe(CO),. On the
basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the
activation mechanism involves electron beam-induced surface reduction and restructuring.

B INTRODUCTION

Surfaces of rutile TiO, have for many years been used as model
systems to explore the physics and chemistry associated with
the varied applications of the material."> Of particular interest
has been the surface science associated with light harvesting
processes such as photocatalysis and dye-sensitized photo-
voltaics."> Applications in the field of molecular electronics
have also been suggested, with TiO, being employed as a
dielectric substrate. This has motivated studies of metal wire
growth as interconnects using physical vapor deposition.®
Moreover, electron-induced surface modification of
TiO,(110)*™® is of interest as a means of patterning the
substrate for wire formation or to template an array of
functional molecules. There is a related interest in the
generation of memristor elements on TiOZ.7

In this work we examine the potential of electron beam-
induced surface activation (EBISA)® to deposit metallic
structures, including wires, on rutile TiO,(110) in ultrahigh
vacuum (UHV). The latter environment is essential for the
analysis methods employed as well as to avoid contamination
from residual gases.” EBISA is a technique that is part of a more
general approach termed focused electron beam-induced
processing (FEBIP), which also includes the related technique
of electron beam-induced deposition (EBID).'~'?

A step-by-step explanation of the recently developed EBISA
process is given in Figure 1. The substrate (a) is first irradiated
with energetic electrons, resulting in local activation of the
surface by electron-stimulated desorption of O atoms (b).%'* In
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a second step, precursor molecules are decomposed upon
contact with the activated area, resulting in a deposition of
nonvolatile material (c, d). In addition, the initial deposit grows
in size because of autocatalytic decomposition of precursor
molecules (e, f).> The autocatalytic growth has been
demonstrated for iron pentacarbonyl, Fe(CO);, on SiO, in
UHV*'*'® and recently also for Co,(CO)s, indicating the
general nature of this process for metalcarbonyls.'”'® Here we
demonstrate EBISA-induced interconnect growth on
TiO,(110). Moreover, additional insight into the mechanism
of the EBISA process has been achieved using local Auger
electron spectroscopy (AES) to gain chemical information and
scanning tunneling microscopy (STM) to provide atomic scale
images.

B EXPERIMENTAL SECTION

All experiments were performed in an Omicron UHV
Multiscanlab at room temperature. The base pressure of the
instrument was <2 X 107'° mbar. The instrument includes an
electron column for scanning electron microscopy (SEM) with
spatial resolution better than 3 nm. This column is also used in
combination with a hemispherical electron energy analyzer for
local Auger electron spectroscopy (AES) and scanning Auger
microscopy (SAM) with a spatial resolution better than 10 nm.
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Figure 1. Electron beam-induced surface activation (EBISA) and the
secondary growth process. The pristine (110) surface of a TiO,
(rutile) crystal (a) is exposed to a focused 15 keV electron beam (b),
leading to the localized release of oxygen via electron-stimulated
desorption processes. The activated surface mediates the dissociation
of Fe(CO); molecules (c) into volatile CO molecules and a primary
deposit of iron atoms (d). Further supply of Fe(CO)s increases the
deposit size via an autocatalytic decomposition reaction (e). Under the
given reaction conditions, the growth process produces very pure,
cubic iron crystallites (f).

For AES, a beam energy of 15 keV and a current of 3 nA were
used, while all electron exposures for SEM and lithography
were done at an electron beam energy of 15 keV and a probe
current of 400 pA. The lithographic processes were controlled
via a homemade lithography application based on LabVIEW 8.6
(National Instruments) and a high-speed DAC PCle-card
(M2i.6021-exp, Spectrum GmbH, Germany). For line
exposures (single pixel width), a single sweep with a step size
of 12 nm was applied. The line dose d; is calculated as d; = Ipg
X tgyen/ Ax, where Ipg is the beam current, ty,.; the dwell time
at every position, and Ax the step size along the line. The
electron dose was controlled via the respective dwell times. The
square patterns were exposed in a single sweep, meander-like
pattern at a step size of 6 nm with the area dose d, being
defined as dy = Ipg X tgye/(Ax)% The corresponding area dose
dy for a given line dose di can be estimated by dividing d; by
the step size.

The backscattered electron (BSE) exit areas and coefficient
were simulated with the program Casino V2.42."” The diameter
corresponds to an area of which 99% of BSEs are emitted. For
the simulations, a primary electron (PE) number of 107 was
applied. The beam diameter was set to 3 nm.

An STM scanner can be inserted between the pole piece of
the SEM column and the sample for in situ STM measure-
ments. Tip positioning is done using SEM imaging. W tips were
used in this work, negatively biased relative to the sample. ST
micrographs were acquired using Matrix V3.0 (Omicron) and
evaluated using the latest versions of WSxM>® (Nanotec
Electronica, Madrid, Spain).

Rutile TiO,(110) samples (PiKem and Crystec) were
prepared by repeated cycles of Ar" sputtering and annealing
to 1160—1180 K until a sharp (1 X 1) low-energy electron
diffraction (LEED) pattern was obtained with no detectable
contaminants in AES. The purity of the Fe(CO)s precursor gas
(ACROS Organics, 99.5%) was confirmed using a mass

spectrometer. The precursor gas was dosed through a nozzle
to about 12 mm from the TiO,(110) surface at an estimated
local pressure of ~9 X 107% mbar, based on simulations with
the software GIS Simulator (version 1.5).2"**

B RESULTS AND DISCUSSION

The first goal of this work was to extend the use of the EBISA
technique, which thus far has only been reported for silica
surfaces, to a different oxide material, namely a TiO,(110)-(1 X
1) surface. For that purpose, line patterns and square patterns
(2 X 2 um?) were irradiated with a focused electron beam.
Fe(CO); was subsequently introduced to allow growth of iron
structures at the irradiated positions. The gas was pumped off
after 270 min, corresponding to an exposure of about 1.1 X 10°
langmuir (1 langmuir is 107 Torr s). Figure 2 shows SEM
images of the resulting Fe line deposits (panels a—d) and Fe
square deposits (panels e—h). The images show a strong
increase in the amount of deposited iron with electron dose.
AES measurements 24 h after fabrication (see Figure S1 in
Supporting Information) indicate the purity of the iron
structures is >90 atom %, which is similar to that achieved
on SiO, substrates.*'>'® Those iron deposits on SiO, exhibit a
low room-temperature resistivity of 88 u€ cm as well as
ferromagnetic behavior.”® These properties can be expected to
be similar on TiO,, potentially making the corresponding iron
deposits suitable interconnects.

At higher SEM magnification we observe that the structures
are comprised of crystalline iron nanocubes. The density of the
cubes within the line and square deposits varies with the
applied electron dose, whereas the size of the individual cubes
at a given gas exposure seems to be similar. With increasing gas
exposure the size of the clusters increases because of
autocatalytic growth. For increased electron doses, the cubes
start to merge into continuous patches, as can be seen for the
1.1 C/cm® square deposit (Figure 2g) or the line deposits
(Figure 2ab). Higher electron doses mark the start of
pronounced proximity effects, i.e, unintended deposits near
the irradiated patterns due to electron scattering.“’lé’24
Pronounced proximity effects are present at the 3.3 C/cm?
square irradiation doses (Figure 2h) and the higher line doses
(Figure 2c,d). For EBISA, all of the observed proximity effects
can be attributed solely to BSE and associated secondary
electrons (SEy).'¢ Proximity effects from forward scattered
electrons (FSE) are not observed in EBISA because of the
absence of structure growth during the electron beam exposure
step.lé

The observation of homogeneously scattered cubes in the
nonirradiated surface regions at low electron irradiation doses
(Figure 2a,b,e) points to the presence of nucleation points on
the TiO,(110) surface that were not induced by the electron
beam (see also Supporting Information, Figure S2). The
defects are oxygen vacancies, which typically are present at an
initial concentration of 5% ML (1 monolayer is the number of
surface unit cells). The vacancies react with water in the
residual vacuum to form the second major form of defects,
bridging hydroxyls (one water molecule reacts with one
vacancy to produce two hydroxyls).*®

Turning to the EBISA mechanism, we can first look at the
effect of the 15 keV electron beam on the reduction state of the
surface. Figure 3a shows Auger electron spectra for non-
irradiated (red line, “pristine”) and strongly irradiated (blue
line, “reduced”) areas of a freshly prepared TiO,(110) surface.
The most prominent features are the Tijyp and Tipyy peaks at
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Figure 2. Line (a—d) and 2 X 2 um? square deposits (e—h) fabricated
by EBISA on TiO,(110) using Fe(CO); as a precursor (approximately
1.1 X 10° langmuir). Primary electron (PE) doses are indicated on the
top right of each panel. The line width (fwhm, SEM intensity)
increases with PE dose range from approximately 150 nm (a) to 2.6
pum (d). The central line is a result of activation by PEs, while the
fringe is caused by BSE proximity effects. For the square fields, deposit
density increases from a loose grain assembly at 0.27 C/cm?® via a
close-packed assembly at 0.55 C/cm? to a fused grain deposit of near
ideal geometry at 1.1 C/cm® At even higher doses, proximity effects
also cause a fringe growth (3.3 C/cm?®). Note that scattered iron
clusters are found all over the surface without electron exposure, a fact
which is attributed to active defects created during sample preparation.

383 and 413—419 eV, respectively, and the Oy, peaks at 491
and S11 eV. It is immediately apparent that the oxygen signal
for the strongly irradiated surface (blue) is considerably smaller
than that for the pristine surface (red); the Ti signals show the
opposite trend, albeit not as pronounced. This behavior
evidences the electron beam-induced desorption of oxygen
from the surface and is in line with that expected from electron-
stimulated desorption (ESD) results from TiO, at lower
electron beam energies.”'* In addition, the change of the peak
shape of the Tijyy signal allows for insight into the chemical
state of the Ti atoms of the surface. As discussed by Nishigaki®®

and Gopel,”” the LMV Auger peak consists of two components:
413 eV for Ti*" and 419 €V for Ti**". In a simplified picture, for
Ti*, in the complete absence of a Ti 3d valence electron, the
valence electron in the LMV Auger process stems from an
interatomic transition of an O 2p electron with a higher binding
energy; on the contrary, for Ti**, at least a partial electron
charge remains in the Ti 3d level (at lower binding energy than
the O 2p level) and thus participates in an intra-atomic Auger
transition at higher kinetic energy. Therefore, the observed
intensity shift from the low- to the high-kinetic energy
contribution of the Tijyy peak is a direct indication of a
reduction of the Ti*" by the electron beam. The evolution of
the LMV peak shape upon increasing electron irradiation is
illustrated in Figure 3b from top (pristine, red) to bottom
(reduced, blue).

In Figure 3¢, the normalized (I ;e = 1) peak areas of the
Tigyn (black) and Ogqp, (orange§ signals and the O:Ti peak
ratio (green) are plotted versus the primary electron dose (note
the logarithmic scale). The apparent O:Ti peak ratio is
normalized so that the value for the pristine surface is set to
2, ie, TiO,,. At doses lower than 0.1 C/cm? the peak ratio
does not change, i.e., the applied dose is not sufficient to induce
a reduction of the surface detectable in AES. After crossing the
0.1 C/cm? threshold, the oxygen intensity and the O:Ti ratio
drop rapidly until a fairly stable lower limit at ~0.9 is
approached at doses larger than 10° C/cm® The corresponding
relative oxygen intensity is 0.6 of the initial value of the pristine
surface. The obtained O:Ti ratio of 0.9 indicates an average
surface composition of TiOgo Note that the chemical
composition of the surface is likely to be nonuniform after
the reduction process, so the detected Auger signal is a
convolution of different Ti oxidation states and chemical
surrounding. In addition, decreased damping due to the loss of
oxygen atoms from the topmost layers has to be taken into
consideration when assessing the Tiyyp, intensity. Nevertheless,
the O:Ti ratio serves as an indicator for the degree of electron
beam-induced reduction of the surface.

The Auger spectra indicate that above 0.1 C/cm’ the
stoichiometry of the surface changes gradually from TiO, to
TiOpy at 10* C/cm® As for the accompanying morphology
change, Figure 4 shows the effect of the electron beam as
viewed by STM. Prior to electron beam exposure, the STM
image shows [001] direction bright rows separated by 0.65 nm
that correspond to Ti atoms."*® A line exposure corresponding
to an electron area dose of approximately 60—100 C/cm’
(electron energy, 15 keV; beam current, 400 pA; step size, 12
nm; dwell time, 150 ms; line dose, SO #C/cm) results in an
O:Ti ratio of 1.1—1.2. The exposed region can be clearly
identified in the image in Figure 4 as an area with a disordered
appearance and a strongly increased number of protrusions
(bright spots) arranged within a vertical line with a width of
approximately 20 + S nm (indicated by dotted yellow lines);
this width is ~7 times larger than the nominal beam diameter
of 3 nm (Gauss profile, 20/80 criterion), indicating the well-
known broadening due to SE and BSE proximity effects. The
apparent surface roughness (rms) of the exposed area (0.12
nm) in STM is double that of the nonirradiated surface. The
left-hand side of the image in Figure 4 resembles the as-
prepared surface, with the characteristic [001] direction Ti rows
visible (see also Supporting Information, Figure S3). However,
there are additional defects in the form of isolated protrusions
and in-row depressions (white arrows) that can be attributed to
proximity effects, as the density is higher than on the as-
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Figure 3. (a) AE spectra of pristine (red) and electron irradiated, reduced (blue)TiO, samples in nonderivative mode. The loss of oxygen KLL
intensity is a clear indication of oxygen loss, i.e., ESD, while the intensity shift of the titanium LMV peak from lower- to higher-kinetic energy is an
indication of a shift from fully oxidized Ti* toward more reduced states like Ti** or even lower. The gradual shift of the peak shape with increasing
electron dose is shown from top to bottom in (b). (c) Quantitative evaluation of the normalized Tijyp, (black) and Oy (orange) peak areas and
apparent O:Ti ratio (green) versus applied electron dose. The apparent O:Ti ratio (green) is set to 2:1 (TiO,) for very low electron doses, i.e., a
pristine substrate. Electron stimulated desorption causes a loss of oxygen atoms, i.e., signal intensity, which simultaneously leads to an increase in the
relative intensity of the Tijyp signal.

Figure 4. High resolution ST micrograph (I = 280 pA, U = 1.2 V, moderately high-pass filtered) of an electron beamline irradiation (50 #C/cm),
marked by the large arrow and yellow lines. The surface on the left shows only minor damage; the typical row pattern of the TiO,(110) surface is
preserved. Defects include (1 X 2) reconstructed sections (small arrows), dark defects in the row structure, and isolated protrusions. On the right, a
disordered section running top to bottom was identified as the result of a line irradiation with a primary electron dose of 50 4#C/cm. The (1 X 1)
structure is barely retained in the highly damaged area; no characteristic defects can be identified in the irradiated area. The loss of long- and short-

range order corresponds to an electron-induced surface amorphization.

prepared surface. Apart from the increase in mean roughness,
the electron beam-induced disorder does not cause a significant
increase in average apparent height. This indicates the absence
of unintentionally formed deposits from residual gases.

The center of the SEM image in Figure 5a clearly shows a
significant electron beam-induced darkening. In previous
studies we showed that this darkening of irradiated areas is
an intrinsic feature of electron beamed oxide surfaces and is not
indicative of contamination.® These results indicate that the
modifications to the TiO,(110) morphology and subsequent
reaction with Fe(CO) are a result of electron beam-induced
oxygen loss.

Panels b and ¢ in Figure 5 show the STM images of the
irradiated SO uC/cm line pattern before and after Fe(CO);
dosing (total exposure: ~10 langmuir), respectively. After the
gas exposure, the formation of iron deposits in the form of
clusters is observed, primarily in the regions irradiated with
electrons (indicated by yellow lines). Larger clusters appear as
slightly asymmetric protrusions in the image, a consequence of
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the applied scanning speed. These clusters have a typical
diameter of 3.2 + 0.3 nm, including tip convolution, and an
apparent height of 1.2 + 0.1 nm (see Supporting Information,
Figure S2). This corresponds to clusters containing 650—1000
Fe atoms.

In addition to the clusters observed within the yellow lines in
Figure S, some deposits are also found in nonirradiated areas to
both sides of the irradiated line. These clusters originate from
growth due to the intrinsic surface defects in TiO,(110) (see
above), as well as from growth due to BSE proximity effect-
induced defects. The BSE exit range of TiO,, here defined as
the distance from the point of impact that includes 99% of all
emitted BSEs (r), was extracted from MC simulations and
amounts to about 1050 nm. All of the scanned area in Figure Sc
is well within this exit range. The BSEs (E > S0 eV by
definition) are able to induce ESD of oxygen atoms within the
Knotek—Feibelman framework (Epsp = ~34 eV),'* thus
creating isolated defects.
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Figure S. SEM scan (a) and STM topography (b) of the TiO,(110)
surface after line irradiation with 50 4#C/cm and after initial Fe growth
from Fe(CO); (c). The line position is indicated by yellow lines. The
strongly contrast-enhanced scanning electron micrograph (a) shows a
dark feature at the position of the line irradiation, conventionally
attributed to carbon deposition from residual gases. STM reveals a
high degree of disorder at the line position, while the surrounding
surface remains fairly unaffected by the irradiation. Upon exposure to
about 10 langmuir of Fe(CO)js, clusters form predominantly at the
irradiated surface area (c). Cluster formation next to the line exposure
is attributed to defects induced by backscattered electrons, ie.,
common proximity effects.

B SUMMARY

Iron nanowires and other nanostructures have been grown on
TiO,(110)-(1 X 1) by electron beam-induced activation and
subsequent dissociative adsorption of Fe(CO);. The mecha-
nism of the EBISA process appears to involve reduction and
restructuring of the substrate due to electron stimulated
desorption of oxygen. This work has demonstrated the
potential of EBISA to write nanoscale interconnects on a
functional dielectric substrate and opens up the possibility of
electronic circuit fabrication at the nanoscale.

B ASSOCIATED CONTENT

© Supporting Information

Local Auger electron spectrum of an iron structure prepared by
EBISA on TiO, (Figure S1), higher resolution STM data of a
line irradiation before and after Fe cluster growth (Figure S2),
and STM images of the freshly prepared rutile TiO,(110)
surface (Figure S3). This material is available free of charge via
the Internet at http://pubs.acs.org.
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