148 research outputs found

    Sky View Factor footprints for urban climate modeling

    Get PDF
    Urban morphology is an important multidimensional variable to consider in climate modeling and observations, because it significantly drives the local and micro-scale climatic variability in cities. Urban form can be described through urban canopy parameters (UCPs) that resolve the spatial heterogeneity of cities by specifying the 3-dimensional geometry, arrangement, and materials of urban features. The sky view factor (SVF) is a dimension-reduced UCP capturing 3-dimensional form through horizon limitation fractions. SVF has become a popular metric to parameterize urban morphology, but current approaches are difficult to scale up to global coverage. This study introduces a Big-Data approach to calculate SVFs for urban areas from Google Street View (GSV). 90-degree field-of-view GSV photos are retrieved and converted into hemispherical views through equiangular projection. The fisheyes are segmented into sky and non-sky pixels using image processing, and the SVF is calculated using an annulus method. Results are compared to SVFs retrieved from GSV images segmented using deep learning. SVF footprints are presented for urban areas around the world tallying 15,938,172 GSV locations. Two use cases are introduced: (1) an evaluation of a Google Earth Engine classified Local Climate Zone map for Singapore; (2) hourly sun duration maps for New York and San Francisco

    Probabilistic Gradient-Based Extrema Tracking

    Full text link
    Feature tracking is a common task in visualization applications, where methods based on topological data analysis (TDA) have successfully been applied in the past for feature definition as well as tracking. In this work, we focus on tracking extrema of temporal scalar fields. A family of TDA approaches address this task by establishing one-to-one correspondences between extrema based on discrete gradient vector fields. More specifically, two extrema of subsequent time steps are matched if they fall into their respective ascending and descending manifolds. However, due to this one-to-one assignment, these approaches are prone to fail where, e.g., extrema are located in regions with low gradient magnitude, or are located close to boundaries of the manifolds. Therefore, we propose a probabilistic matching that captures a larger set of possible correspondences via neighborhood sampling, or by computing the overlap of the manifolds. We illustrate the usefulness of the approach with two application cases

    Interpolation of Scientific Image Databases

    Get PDF
    This paper explores how recent convolutional neural network (CNN)-based techniques can be used to interpolate images inside scientific image databases. These databases are frequently used for the interactive visualization of large-scale simulations, where images correspond to samples of the parameter space (e.g., timesteps, isovalues, thresholds, etc.) and the visualization space (e.g., camera locations, clipping planes, etc.). These databases can be browsed post hoc along the sampling axis to emulate real-time interaction with large-scale datasets. However, the resulting databases are limited to their contained images, i.e., the sampling points. In this paper, we explore how efficiently and accurately CNN-based techniques can derive new images by interpolating database elements. We demonstrate on several real-world examples that the size of databases can be further reduced by dropping samples that can be interpolated post hoc with an acceptable error, which we measure qualitatively and quantitatively

    Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona

    Get PDF
    The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas

    Parallel Computation of Piecewise Linear Morse-Smale Segmentations

    Full text link
    This paper presents a well-scaling parallel algorithm for the computation of Morse-Smale (MS) segmentations, including the region separators and region boundaries. The segmentation of the domain into ascending and descending manifolds, solely defined on the vertices, improves the computational time using path compression and fully segments the border region. Region boundaries and region separators are generated using a multi-label marching tetrahedra algorithm. This enables a fast and simple solution to find optimal parameter settings in preliminary exploration steps by generating an MS complex preview. It also poses a rapid option to generate a fast visual representation of the region geometries for immediate utilization. Two experiments demonstrate the performance of our approach with speedups of over an order of magnitude in comparison to two publicly available implementations. The example section shows the similarity to the MS complex, the useability of the approach, and the benefits of this method with respect to the presented datasets. We provide our implementation with the paper.Comment: Journal: IEEE Transactions on Visualization and Computer Graphics / Submitted: 22-Jun-2022 / Accepted: 13-Mar-202

    Cinema Darkroom: A Deferred Rendering Framework for Large-Scale Datasets

    Full text link
    This paper presents a framework that fully leverages the advantages of a deferred rendering approach for the interactive visualization of large-scale datasets. Geometry buffers (G-Buffers) are generated and stored in situ, and shading is performed post hoc in an interactive image-based rendering front end. This decoupled framework has two major advantages. First, the G-Buffers only need to be computed and stored once---which corresponds to the most expensive part of the rendering pipeline. Second, the stored G-Buffers can later be consumed in an image-based rendering front end that enables users to interactively adjust various visualization parameters---such as the applied color map or the strength of ambient occlusion---where suitable choices are often not known a priori. This paper demonstrates the use of Cinema Darkroom on several real-world datasets, highlighting CD's ability to effectively decouple the complexity and size of the dataset from its visualization

    Preface IEEE LDAV 2023

    Get PDF
    Join us for the 13th IEEE Symposium on Large Data Analysis and Visualization (IEEE LDAV) on Monday, October 23rd 2023 collocated with IEEE VIS 2023 in Melbourne, Victoria, Australia.<br/

    Viscous Fingering: A Topological Visual Analytic Approach

    Get PDF
    International audienceWe present a methodology to analyze and visualize an ensemble of finite pointset method (FPM) simulations that model the viscous fingering process of salt solutions inside water. In course of the simulations the solutions form structures with increased salt concentration called viscous fingers. These structures are of primary interest to domain scientists as it is not clear when and where viscous fingers appear and how they evolve. To explore the aleatoric uncertainty embedded in the simulations we analyze an ensemble of simulation runs which differ due to stochastic effects. To detect and track the viscous fingers we derive a voxel volume for each simulation where fingers are identified as subvolumes that satisfy geometrical and topological constraints. Properties and the evolution of fingers are illustrated through tracking graphs that visualize when fingers form, dissolve, merge, and split. We provide multiple linked views to compare, browse, and analyze the ensemble in real-time. Fig. 1: Detail view of our visualization tool consisting of the 3D rendering of viscous fingers (left), and the tracking graph showing their evolution (right)
    • …
    corecore