11 research outputs found

    Modelling and model assessment of grid based Multi-Energy Systems

    Get PDF
    Two main strategies should be implemented to decarbonise the energy sector: substituting fossil fuels with renewable energies, and increasing system efficiency. Both strategies pose challenges for today's energy systems and their operators, because renewable energy is mainly decentralized, not always predictable, and introduces a degree of volatility into grids. Multi-energy systems, which incorporate multiple energy sectors, allow flexibility options to be used across energy carriers and thus further increase system flexibility. In addition, these multi-energy systems can also improve the overall energy efficiency. They enable cascaded energy use and allow for seasonal storage between different energy carriers. A comprehensive system modelling framework should consider all profound interactions between relevant system control variables. The aim of this proposed paper is to show the correlation between major aspects of grid based MES and how they can be combined in a system modelling framework

    Optimal Municipal Energy System Design and Operation Using Cumulative Exergy Consumption Minimisation

    No full text
    In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources

    Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation

    No full text
    Efficiency measures and the integration of renewable energy sources are key to achieving a sustainable society. The cumulative exergy consumption describes the resource consumption of a product from the raw material to the final utilisation. It includes the exergy expenses for energy infrastructure as well as the imported energy. Since consumers and renewable potentials are usually in different locations, grid restrictions and energy flows have a significant impact on the optimal energy system design. In this paper we will use cumulative exergy minimisation together with load flow calculations to determine the optimal system design of a multi-cell municipal energy system. Two different load flow representations are compared. The network flow model uses transmission efficiencies for heat, gas and electricity flows. The power flow representation uses a linear DC approximated load flow for electricity flows and a MILP (mixed integer linear programming) representation for heat and gas flows to account for the nonlinear pressure loss relation. Although both representations provide comparable overall results, the installed capacities in the individual cells differ significantly. The differences are greatest in well meshed cells, while they are small in stub lines

    HyFlow—A Hybrid Load Flow-Modelling Framework to Evaluate the Effects of Energy Storage and Sector Coupling on the Electrical Load Flows

    No full text
    HyFlow is a grid-based multi-energy system (MES) modelling framework. It aims to model the status quo of current energy systems, future scenarios with a high share of fluctuating energy sources or additional consumers like electric vehicles, and to compare solution strategies if certain parts of the infrastructure are congested. In order to evaluate the congestion limits and the feasibility and suitability of solution strategies (e.g., energy storage, sector coupling technologies, demand response (DR)), load flow calculations of all three main grid-bound energy carriers are implemented in one single modelling framework. In addition to the implemented load flow models, it allows the interaction of these grids with the use of hybrid elements. This measure enables a proper assessment of future scenarios, not only for the infrastructure of one energy carrier, but for the overall energy system. The calculation workflow of HyFlow, including the implemented load flow calculations, as well as the implementation of the flexibility options, is described in detail in the methodology section. To demonstrate the wide range of applicability of HyFlow with different spatial ranges, two case studies referring to current research problems are presented: a city and a region surrounding the mentioned city. The calculations for the mentioned case studies are performed for three levels. A “status quo” level, a “high-stress” level with added fluctuating energy sources and consumers, and an “improvement” level, where flexibility options are introduced to the system. The effect of the flexibility options on future energy grids is, therefore, analyzed and evaluated. A wide variety of evaluation criteria can be selected. For example, the maximum load of certain power lines, the self-sufficiency of the overall system, the total transport losses or the total energy consumption

    Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties

    No full text
    The solid electrolyte interphase (SEI) in Li and Na ion batteries forms when highly reducing or oxidizing electrode materials come into contact with a liquid organic electrolyte. Its ability to form a mechanically robust, ion-conducting, and electron-insulating layer critically determines performance, cycle life, and safety. Li or Na alkyl carbonates (LiAC and NaAC, respectively) are lead SEI components in state-of-the-art carbonate based electrolytes, and our fundamental understanding of their charge transport and mechanical properties may hold the key to designing electrolytes forming an improved SEI. We synthesized a homologous series of LiACs and NaACs from methyl to octyl analogues and characterized them with respect to structure, ionic conductivity, and stiffness. The compounds assume layered structures except for the lithium methyl carbonate. Room-temperature conductivities were found to be ∼10<sup>–9</sup> S cm<sup>–1</sup> for lithium methyl carbonate, <10<sup>–12</sup> S cm<sup>–1</sup> for the other LiACs, and <10<sup>–12</sup> S cm<sup>–1</sup> for the NaACs with ion transport mostly attributed to grain boundaries. While LiACs show stiffnesses of ∼1 GPa, NaACs become significantly softer with increasing chain lengths. These findings will help to more precisely interpret the complex results from charge transport and mechanical characterization of real SEIs and can give a rationale for influencing the SEI’s mechanical properties via the electrolyte

    Science goals and mission architecture of the Europa Lander mission concept

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hand, K., Phillips, C., Murray, A., Garvin, J., Maize, E., Gibbs, R., Reeves, G., San Martin, A., Tan-Wang, G., Krajewski, J., Hurst, K., Crum, R., Kennedy, B., McElrath, T., Gallon, J., Sabahi, D., Thurman, S., Goldstein, B., Estabrook, P., Lee, S. W., Dooley, J. A., Brinckerhoff, W. B., Edgett, K. S., German, C. R., Hoehler, T. M., Hörst, S. M., Lunine, J. I., Paranicas, C., Nealson, K., Smith, D. E., Templeton, A. S., Russell, M. J., Schmidt, B., Christner, B., Ehlmann, B., Hayes, A., Rhoden, A., Willis, P., Yingst, R. A., Craft, K., Cameron, M. E., Nordheim, T., Pitesky, J., Scully, J., Hofgartner, J., Sell, S. W., Barltrop, K. J., Izraelevitz, J., Brandon, E. J., Seong, J., Jones, J.-P., Pasalic, J., Billings, K. J., Ruiz, J. P., Bugga, R. V., Graham, D., Arenas, L. A., Takeyama, D., Drummond, M., Aghazarian, H., Andersen, A. J., Andersen, K. B., Anderson, E. W., Babuscia, A., Backes, P. G., Bailey, E. S., Balentine, D., Ballard, C. G., Berisford, D. F., Bhandari, P., Blackwood, K., Bolotin, G. S., Bovre, E. A., Bowkett, J., Boykins, K. T., Bramble, M. S., Brice, T. M., Briggs, P., Brinkman, A. P., Brooks, S. M., Buffington, B. B., Burns, B., Cable, M. L., Campagnola, S., Cangahuala, L. A., Carr, G. A., Casani, J. R., Chahat, N. E., Chamberlain-Simon, B. K., Cheng, Y., Chien, S. A., Cook, B. T., Cooper, M., DiNicola, M., Clement, B., Dean, Z., Cullimore, E. A., Curtis, A. G., Croix, J-P. de la, Pasquale, P. Di, Dodd, E. M., Dubord, L. A., Edlund, J. A., Ellyin, R., Emanuel, B., Foster, J. T., Ganino, A. J., Garner, G. J., Gibson, M. T., Gildner, M., Glazebrook, K. J., Greco, M. E., Green, W. M., Hatch, S. J., Hetzel, M. M., Hoey, W. A., Hofmann, A. E., Ionasescu, R., Jain, A., Jasper, J. D., Johannesen, J. R., Johnson, G. K., Jun, I., Katake, A. B., Kim-Castet, S. Y., Kim, D. I., Kim, W., Klonicki, E. F., Kobeissi, B., Kobie, B. D., Kochocki, J., Kokorowski, M., Kosberg, J. A., Kriechbaum, K., Kulkarni, T. P., Lam, R. L., Landau, D. F., Lattimore, M. A., Laubach, S. L., Lawler, C. R., Lim, G., Lin, J. Y., Litwin, T. E., Lo, M. W., Logan, C. A., Maghasoudi, E., Mandrake, L., Marchetti, Y., Marteau, E., Maxwell, K. A., Namee, J. B. Mc, Mcintyre, O., Meacham, M., Melko, J. P., Mueller, J., Muliere, D. A., Mysore, A., Nash, J., Ono, H., Parker, J. M., Perkins, R. C., Petropoulos, A. E., Gaut, A., Gomez, M. Y. Piette, Casillas, R. P., Preudhomme, M., Pyrzak, G., Rapinchuk, J., Ratliff, J. M., Ray, T. L., Roberts, E. T., Roffo, K., Roth, D. C., Russino, J. A., Schmidt, T. M., Schoppers, M. J., Senent, J. S., Serricchio, F., Sheldon, D. J., Shiraishi, L. R., Shirvanian, J., Siegel, K. J., Singh, G., Sirota, A. R., Skulsky, E. D., Stehly, J. S., Strange, N. J., Stevens, S. U., Sunada, E. T., Tepsuporn, S. P., Tosi, L. P. C., Trawny, N., Uchenik, I., Verma, V., Volpe, R. A., Wagner, C. T., Wang, D., Willson, R. G., Wolff, J. L., Wong, A. T., Zimmer, A. K., Sukhatme, K. G., Bago, K. A., Chen, Y., Deardorff, A. M., Kuch, R. S., Lim, C., Syvertson, M. L., Arakaki, G. A., Avila, A., DeBruin, K. J., Frick, A., Harris, J. R., Heverly, M. C., Kawata, J. M., Kim, S.-K., Kipp, D. M., Murphy, J., Smith, M. W., Spaulding, M. D., Thakker, R., Warner, N. Z., Yahnker, C. R., Young, M. E., Magner, T., Adams, D., Bedini, P., Mehr, L., Sheldon, C., Vernon, S., Bailey, V., Briere, M., Butler, M., Davis, A., Ensor, S., Gannon, M., Haapala-Chalk, A., Hartka, T., Holdridge, M., Hong, A., Hunt, J., Iskow, J., Kahler, F., Murray, K., Napolillo, D., Norkus, M., Pfisterer, R., Porter, J., Roth, D., Schwartz, P., Wolfarth, L., Cardiff, E. H., Davis, A., Grob, E. W., Adam, J. R., Betts, E., Norwood, J., Heller, M. M., Voskuilen, T., Sakievich, P., Gray, L., Hansen, D. J., Irick, K. W., Hewson, J. C., Lamb, J., Stacy, S. C., Brotherton, C. M., Tappan, A. S., Benally, D., Thigpen, H., Ortiz, E., Sandoval, D., Ison, A. M., Warren, M., Stromberg, P. G., Thelen, P. M., Blasy, B., Nandy, P., Haddad, A. W., Trujillo, L. B., Wiseley, T. H., Bell, S. A., Teske, N. P., Post, C., Torres-Castro, L., Grosso, C. Wasiolek, M. Science goals and mission architecture of the Europa Lander mission concept. The Planetary Science Journal, 3(1), (2022): 22, https://doi.org/10.3847/psj/ac4493.Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa's icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.K.P.H., C.B.P., E.M., and all authors affiliated with the Jet Propulsion Laboratory carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (grant No. 80NM0018D0004). J.I.L. was the David Baltimore Distinguished Visiting Scientist during the preparation of the SDT report. JPL/Caltech2021
    corecore