3 research outputs found

    SARS-CoV-2 transmissions in students and teachers: seroprevalence follow-up study in a German secondary school in November and December 2020

    No full text
    Objective To quantify the number of undetected SARS-CoV-2 infections in educational settings.Design Serial SARS-CoV-2 seroprevalence study before and during the second wave of the COVID-19 pandemic.Setting Secondary school in Dresden, Germany.Participants Grade 8–12 students and their teachers were invited to participate in serial blood sampling and SARS-CoV-2 IgG antibody assessment.Main outcome measure Seroprevalence of SARS-CoV-2 antibodies in study population.Results 247 students and 55 teachers participated in the initial study visit and 197 students and 40 teachers completed follow-up. Seroprevalence increased from 1.7% (0.3–3.3) to 6.8% (3.8–10.1) during the study period mirroring the increase of officially reported SARS-CoV-2 infections during this time. The ratio of undetected to detected SARS-CoV-2 infections ranged from 0.25 to 0.33.Conclusions We could not find evidence of relevant silent, asymptomatic spread of SARS-CoV-2 in schools neither in a low prevalence setting nor during the second wave of the pandemic, making it unlikely that educational settings play a crucial role in driving the SARS-CoV-2 pandemic.Trial registration number DRKS00022455

    Energy substrates that fuel fast neuronal network oscillations

    Get PDF
    Fast neuronal network oscillations in the gamma-frequency band (30-100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 minutes in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective
    corecore