7 research outputs found

    HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions

    Get PDF
    Background: The modeling of interactions among transcription factors (TFs) and their respective target genes (TGs) into transcriptional regulatory networks is important for the complete understanding of regulation of biological processes. In the case of human TF-TG interactions, there is no database at present that explicitly provides such information even though many databases containing human TF-TG interaction data have been available. In an effort to provide researchers with a repository of TF-TG interactions from which such interactions can be directly extracted, we present here the Human Transcriptional Regulation Interactions database (HTRIdb).
Description: The HTRIdb is an open-access database of experimentally validated interactions among human TFs and their TGs. HTRIdb can be searched via a user-friendly web interface and the retrieved TF-TG interactions data and the associated protein-protein interactions can be downloaded or interactively visualized as a network using the Cytoscape Web software. Moreover, users can improve the database quality by uploading their own interactions and indicating inconsistencies in the data. So far, HTRIdb has been populated with 283 TFs that regulate 11886 genes, totaling 18160 TF-TG interactions. HTRIdb is freely available at http://www.lbbc.ibb.unesp.br/htri.
Conclusions: HTRIdb is a powerful user-friendly tool from which human experimentally validated TF-TG interactions can be easily extracted and used to construct transcriptional regulation interaction networks enabling researchers to decipher the regulation of biological processes

    Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Full text link

    Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses

    No full text
    Target prediction is generally the first step toward recognition of bona fide microRNA (miRNA)-target interactions in living cells. Several target prediction tools are now available, which use distinct criteria and stringency to provide the best set of candidate targets for a single miRNA or a subset of miRNAs. However, there are many false-negative predictions, and consensus about the optimum strategy to select and use the output information provided by the target prediction tools is lacking. We compared the performance of four tools cited in literature—TargetScan (TS), miRanda-mirSVR (MR), Pita, and RNA22 (R22), and we determined the most effective approach for analyzing target prediction data (individual, union, or intersection). For this purpose, we calculated the sensitivity, specificity, precision, and correlation of these approaches using 10 miRNAs (miR-1-3p, miR-17-5p, miR-21-5p, miR-24-3p, miR-29a-3p, miR-34a-5p, miR-124-3p, miR-125b-5p, miR-145-5p, and miR-155-5p) and 1,400 genes (700 validated and 700 non-validated) as targets of these miRNAs. The four tools provided a subset of high-quality predictions and returned few false-positive predictions; however, they could not identify several known true targets. We demonstrate that union of TS/MR and TS/MR/R22 enhanced the quality of in silico prediction analysis of miRNA targets. We conclude that the union rather than the intersection of the aforementioned tools is the best strategy for maximizing performance while minimizing the loss of time and resources in subsequent in vivo and in vitro experiments for functional validation of miRNA-target interactions

    Understanding the Modus Operandi of MicroRNA Regulatory Clusters

    No full text
    MicroRNAs (miRNAs) are non-coding RNAs that regulate a wide range of biological pathways by post-transcriptionally modulating gene expression levels. Given that even a single miRNA may simultaneously control several genes enrolled in multiple biological functions, one would expect that these tiny RNAs have the ability to properly sort among distinctive cellular processes to drive protein production. To test this hypothesis, we scrutinized previously published microarray datasets and clustered protein-coding gene expression profiles according to the intensity of fold-change levels caused by the exogenous transfection of 10 miRNAs (miR-1, miR-7, miR-9, miR-124, miR-128a, miR-132, miR-133a, miR-142, miR-148b, miR-181a) in a human cell line. Through an in silico functional enrichment analysis, we discovered non-randomic regulatory patterns, proper of each cluster identified. We demonstrated that miRNAs are capable of equivalently modulate the expression signatures of target genes in regulatory clusters according to the biological function they are assigned to. Moreover, target prediction analysis applied to ten vertebrate species, suggest that such miRNA regulatory modus operandi is evolutionarily conserved within vertebrates. Overall, we discovered a complex regulatory cluster-module strategy driven by miRNAs, which relies on the controlled intensity of the repression over distinct targets under specific biological contexts. Our discovery helps to clarify the mechanisms underlying the functional activity of miRNAs and makes it easier to take the fastest and most accurate path in the search for the functions of miRNAs in any distinct biological process of interest

    GALANT: a Cytoscape plugin for visualizing data as functional landscapes projected onto biological networks

    No full text
    Network-level visualization of functional data is a key aspect of both analysis and understanding of biological systems. In a continuing effort to create clear and integrated visualizations that facilitate the gathering of novel biological insights despite the overwhelming complexity of data, we present here the GrAph LANdscape VisualizaTion (GALANT), a Cytoscape plugin that builds functional landscapes onto biological networks. By using GALANT, it is possible to project any type of numerical data onto a network to create a smoothed data map resembling the network layout. As a Cytoscape plugin, GALANT is further improved by the functionalities of Cytoscape, the popular bioinformatics package for biological network visualization and data integration.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore