2,298 research outputs found

    Prethermalization without Temperature

    No full text
    While a clean, driven system generically absorbs energy until it reaches "infinite temperature," it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethernial regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude

    Optimal compression of constrained quantum time evolution

    Full text link
    The time evolution of quantum many-body systems is one of the most promising applications for near-term quantum computers. However, the utility of current quantum devices is strongly hampered by the proliferation of hardware errors. The minimization of the circuit depth for a given quantum algorithm is therefore highly desirable, since shallow circuits generally are less vulnerable to decoherence. Recently, it was shown that variational circuits are a promising approach to outperform current state-of-the-art methods such as Trotter decomposition, although the optimal choice of parameters is a computationally demanding task. In this work, we demonstrate a simplification of the variational optimization of circuits implementing the time evolution operator of local Hamiltonians by directly encoding constraints of the physical system under consideration. We study the expressibility of such constrained variational circuits for different models and constraints. Our results show that the encoding of constraints allows a reduction of optimization cost by more than one order of magnitude and scalability to arbitrary large system sizes, without loosing accuracy in most systems. Furthermore, we discuss the exceptions in locally-constrained systems and provide an explanation by means of an restricted lightcone width after incorporating the constraints into the circuits.Comment: 16 pages, 17 figure

    C and S induces changes in the electronic and geometric structure of Pd(533) and Pd(320)

    Full text link
    We have performed ab initio electronic structure calculations of C and S adsorption on two vicinal surfaces of Pd with different terrace geometry and width. We find both adsorbates to induce a significant perturbation of the surface electronic and geometric structure of Pd(533) and Pd(320). In particular C adsorbed at the bridge site at the edge of a Pd chain in Pd(320) is found to penetrate the surface to form a sub-surface structure. The adsorption energies show almost linear dependence on the number of adsorbate-metal bonds, and lie in the ranges of 5.31eV to 8.58eV for C and 2.89eV to 5.40eV for S. A strong hybridization between adsorbate and surface electronic states causes a large splitting of the bands leading to a drastic decrease in the local densities of electronic states at the Fermi-level for Pd surface atoms neighboring the adsorbate which may poison catalytic activity of the surface. Comparison of the results for Pd(533) with those obtained earlier for Pd(211) suggests the local character of the impact of the adsorbate on the geometric and electronic structures of Pd surfaces.Comment: 14 pages 9 figs, Accepted J. Phys: Conden

    The BaBar Event Building and Level-3 Trigger Farm Upgrade

    Full text link
    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOGT00

    Cancellation of probe effects in measurements of spin polarized momentum density by electron positron annihilation

    Full text link
    Measurements of the two dimensional angular correlation of the electron-positron annihilation radiation have been done in the past to detect the momentum spin density and the Fermi surface. We point out that the momentum spin density and the Fermi Surface of ferromagnetic metals can be revealed within great detail owing to the large cancellation of the electron-positron matrix elements which in paramagnetic multiatomic systems plague the interpretation of the experiments. We prove our conjecture by calculating the momentum spin density and the Fermi surface of the half metal CrO2, who has received large attention due to its possible applications as spintronics material

    Ferromagnetism in Fe-substituted spinel semiconductor ZnGa2_2O4_4

    Full text link
    Motivated by the recent experimental observation of long range ferromagnetic order at a relatively high temperature of 200K in the Fe-doped ZnGa2_2O4_4 semiconducting spinel, we propose a possible mechanism for the observed ferromagnetism in this system. We show, supported by band structure calculations, how a model similar to the double exchange model can be written down for this system and calculate the ground state phase diagram for the two cases where Fe is doped either at the tetrahedral position or at the octahedral position. We find that in both cases such a model can account for a stable ferromagnetic phase in a wide range of parameter space. We also argue that in the limit of high Fe2+^{2+} concentration at the tetrahedral positions a description in terms of a two band model is essential. The two ege_g orbitals and the hopping between them play a crucial role in stabilizing the ferromagnetic phase in this limit. The case when Fe is doped simultaneously at both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear

    Substituting the main group element in cobalt - iron based Heusler alloys: Co2_2FeAl1−x_{1-x}Six_x

    Full text link
    This work reports about electronic structure calculations for the Heusler compound Co2_2FeAl1−x_{1-x}Six_x. Particular emphasis was put on the role of the main group element in this compound. The substitution of Al by Si leads to an increase of the number of valence electrons with increasing Si content and may be seen as electron-doping. Self-consistent electronic structure calculations were performed to investigate the consequences of the electron doping for the magnetic properties. The series Co2_2FeAl1−x_{1-x}Six_x is found to exhibit half-metallic ferromagnetism and the magnetic moment follows the Slater-Pauling rule. It is shown that the electron-doping stabilises the gap in the minority states for x=0.5x=0.5.Comment: J. Phys. D (accepted

    High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si

    Full text link
    This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy
    • …
    corecore