112 research outputs found

    A Review of High School Level Astronomy Student Research Projects over the last two decades

    Get PDF
    Since the early 1990s with the arrival of a variety of new technologies, the capacity for authentic astronomical research at the high school level has skyrocketed. This potential, however, has not realized the bright-eyed hopes and dreams of the early pioneers who expected to revolutionise science education through the use of telescopes and other astronomical instrumentation in the classroom. In this paper, a general history and analysis of these attempts is presented. We define what we classify as an Astronomy Research in the Classroom (ARiC) project and note the major dimensions on which these projects differ before describing the 22 major student research projects active since the early 1990s. This is followed by a discussion of the major issues identified that affected the success of these projects and provide suggestions for similar attempts in the future.Comment: Accepted for Publication in PASA. 26 page

    B- and A-Type Stars in the Taurus-Auriga Star Forming Region

    Get PDF
    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral type B. The second group consists of early-type stars compiled from (i) literature listings in SIMBAD; (ii) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud; (iii) magnitude- and color-selected point sources from the 2MASS; and (iv) spectroscopically identified early-type stars from the SDSS coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), tau Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.Comment: 31 pages, 18 figures, 6 tables. Accepted for publication in The Astrophysical Journa

    SPRITE: the Spitzer proposal review website

    Get PDF
    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration

    MySQL/PHP web database applications for IPAC proposal submission

    Get PDF
    The Infrared Processing and Analysis Center (IPAC) is NASA's multi-mission center of expertise for long-wavelength astrophysics. Proposals for various IPAC missions and programs are ingested via MySQL/PHP web database applications. Proposers use web forms to enter coversheet information and upload PDF files related to the proposal. Upon proposal submission, a unique directory is created on the webserver into which all of the uploaded files are placed. The coversheet information is converted into a PDF file using a PHP extension called FPDF. The files are concatenated into one PDF file using the command-line tool pdftk and then forwarded to the review committee. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration

    Proposal review rankings: the influence of reviewer discussions on proposal selection

    Get PDF
    The telescope time allocation process for NASA's Great Observatories involves a substantial commitment of time and expertise by the astronomical community. The annual review meetings typically have 100 external participants. Each reviewer spends 3-6 days at the meeting in addition to one-two weeks of preparation time, reading and grading proposals. The reviewers grade the proposals based on their individual reading prior to the meeting and grade them again after discussion within the broad, subject-based review panels. We summarize here how the outcome of the review process for three Spitzer observing cycles would have changed if the selection had been done strictly based on the preliminary grades without having the panels meet and discuss the proposals. The changes in grading during the review meeting have a substantial impact on the final list of selected proposals. Approximately 30% of the selected proposals would not have been included if just the preliminary rankings had been used to make the selection

    A SURVEY OF NEARBY MAIN-SEQUENCE STARS FOR SUBMILLIMETER EMISSION

    Get PDF
    We searched for submillimeter emission around 10 Vega-type stars and one Herbig Ae star with the four-color bolometer at 1300 μm and the 19 channel bolometer array at 870 μm using the Heinrich Hertz Telescope at the Submillimeter Telescope Observatory. All of our sources were undetected at 870 μm. In the case of HD 131156, we have a 3 σ detection at 1300 μm. We report a flux of 6.25 ± 1.88 mJy for the HD 131156 disk and a corresponding dust mass of 2.4 ± 0.7 lunar masses. However, we did not detect HD 131156 at 870 μm, so we are cautious about the 1300 μm detection. We performed follow-up infrared observations of HD 131156 using MIRLIN at the Palomar 200 inch telescope, which resolved both components of the binary. The data are photospheric, implying that the system does not have a hot, inner dust component. We report submillimeter upper limits on fluxes for the remaining systems

    Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    Get PDF
    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc

    Limits on the Boron Isotopic Ratio in HD 76932

    Full text link
    Data in the 2090 A B region of HD 76932 have been obtained at high S/N using the HST GHRS echelle at a resolution of 90,000. This wavelength region has been previously identified as a likely candidate for observing the B11/B10 isotopic splitting. The observations do not match a calculated line profile extremely well at any abundance for any isotopic ratio. If the B abundance previously determined from observations at 2500 A is assumed, the calculated line profile is too weak, indicating a possible blending line. Assuming that the absorption at 2090 A is entirely due to boron, the best-fit total B abundance is higher than but consistent with that obtained at 2500 A, and the best-fit isotopic ratio (B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due to B and there is an unknown blend, the best-fit isotopic ratio may be closer to 1:1. Future observations of a similar metal-poor star known to have unusually low B should allow us to distinguish between these two possibilities. The constraints that can be placed on the isotopic ratio based on comparisons with similar observations of HD 102870 and HD 61421 (Procyon) are also discussed.Comment: Accepted for Nov 1998 Ap

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS

    Get PDF
    We discuss the combined IRAC/MIPS c2d Spitzer Legacy observations of the Serpens star-forming region. We describe criteria for isolating bona fide YSOs from the extensive background of extragalactic objects. We then discuss the properties of the resulting high-confidence set of 235 YSOs. An additional 51 lower confidence YSOs outside this area are identified from the MIPS data and 2MASS photometry. We present color-color diagrams to compare our observed source properties with those of theoretical models for star/disk/envelope systems and our own modeling of the objects that are well represented by a stellar photosphere plus circumstellar disk. These objects exhibit a wide range of disk properties, from many with actively accreting disks to some with both passive disks and even possibly debris disks. The YSO luminosity function extends down to at least a few times 10^(-3) L_☉ or lower. The lower limit may be set more by our inability to distinguish YSOs from extragalactic sources than by the lack of YSOs at very low luminosities. We find no evidence for variability in the shorter IRAC bands between the two epochs of our data set, Δt ~ 6 hr. A spatial clustering analysis shows that the nominally less evolved YSOs are more highly clustered than the later stages. The background extragalactic population can be fitted by the same two-point correlation function as seen in other extragalactic studies. We present a table of matches between several previous infrared and X-ray studies of the Serpens YSO population and our Spitzer data set. The clusters in Serpens have a very high surface density of YSOs, primarily with SEDs suggesting extreme youth. The total number of YSOs, mostly Class II, is greater outside the clusters
    • …
    corecore