265 research outputs found

    Scale-Free Random SAT Instances

    Full text link
    We focus on the random generation of SAT instances that have properties similar to real-world instances. It is known that many industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in general, with classical randomly generated instances. We provide a different generation model of SAT instances, called \emph{scale-free random SAT instances}. It is based on the use of a non-uniform probability distribution P(i)∼i−βP(i)\sim i^{-\beta} to select variable ii, where β\beta is a parameter of the model. This results into formulas where the number of occurrences kk of variables follows a power-law distribution P(k)∼k−δP(k)\sim k^{-\delta} where δ=1+1/β\delta = 1 + 1/\beta. This property has been observed in most real-world SAT instances. For β=0\beta=0, our model extends classical random SAT instances. We prove the existence of a SAT-UNSAT phase transition phenomenon for scale-free random 2-SAT instances with β<1/2\beta<1/2 when the clause/variable ratio is m/n=1−2β(1−β)2m/n=\frac{1-2\beta}{(1-\beta)^2}. We also prove that scale-free random k-SAT instances are unsatisfiable with high probability when the number of clauses exceeds ω(n(1−β)k)\omega(n^{(1-\beta)k}). %This implies that the SAT/UNSAT phase transition phenomena vanishes when β>1−1/k\beta>1-1/k, and formulas are unsatisfiable due to a small core of clauses. The proof of this result suggests that, when β>1−1/k\beta>1-1/k, the unsatisfiability of most formulas may be due to small cores of clauses. Finally, we show how this model will allow us to generate random instances similar to industrial instances, of interest for testing purposes

    An Improved Separation of Regular Resolution from Pool Resolution and Clause Learning

    Full text link
    We prove that the graph tautology principles of Alekhnovich, Johannsen, Pitassi and Urquhart have polynomial size pool resolution refutations that use only input lemmas as learned clauses and without degenerate resolution inferences. We also prove that these graph tautology principles can be refuted by polynomial size DPLL proofs with clause learning, even when restricted to greedy, unit-propagating DPLL search

    Quasipolynomial size frege proofs of Frankl's Theorem on the trace of sets

    Get PDF
    We extend results of Bonet, Buss and Pitassi on Bondy's Theorem and of Nozaki, Arai and Arai on Bollobas' Theorem by proving that Frankl's Theorem on the trace of sets has quasipolynomial size Frege proofs. For constant values of the parameter t, we prove that Frankl's Theorem has polynomial size AC(0)-Frege proofs from instances of the pigeonhole principle.Peer ReviewedPostprint (author's final draft

    Degree complexity for a modified pigeonhole principle

    Get PDF
    We consider a modification of the pigeonhole principle, M P H P, introduced by Goerdt in [7]. M P H P is defined over n pigeons and log n holes, and more than one pigeon can go into a hole (according to some rules). Using a technique of Razborov [9] and simplified by Impagliazzo, Pudlak and Sgall [8], we prove that any Polynomial Calculus refutation of a set of polynomials encoding the M P H P, requires degree Omega(log n). We also prove a simple Lemma giving a simulation of Resolution by Polynomial Calculus. Using this lemma, and a Resolution upper bound by Goerdt [7], we obtain that the degree lower bound is tight. Our lower bound establishes the optimality of the tree-like Resolution simulation by the Polynomial Calculus given in [6]

    Community Structure in Industrial SAT Instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on complex networks has developed techniques of analysis and algorithms to study real-world graphs that can be used by the SAT community. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, inspired by the results on complex networks, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. In our analysis, we represent SAT instances as graphs, and we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erd\"os-R\'enyi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver. In particular, we use the community structure to detect that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. This is, learned clauses tend to contain variables of distinct communities

    Polynomial Calculus for MaxSAT

    Get PDF
    MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a CNF formula. We consider a natural generalization of this problem to generic sets of polynomials and propose a weighted version of Polynomial Calculus to address this problem. Weighted Polynomial Calculus is a natural generalization of MaxSAT-Resolution and weighted Resolution that manipulates polynomials with coefficients in a finite field and either weights in ? or ?. We show the soundness and completeness of these systems via an algorithmic procedure. Weighted Polynomial Calculus, with weights in ? and coefficients in ??, is able to prove efficiently that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in ?, it also proves efficiently that the Pigeonhole Principle is minimally unsatisfiable

    Community structure in industrial SAT instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. It is believed that most of these successful techniques exploit the underlying structure of industrial instances. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. Representing SAT instances as graphs, we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erdös-Rényi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver, and observe that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. Motivated by this observation, we finally present an application that exploits the community structure to detect relevant learned clauses, and we show that detecting these clauses results in an improvement on the performance of the SAT solver. Empirically, we observe that this improves the performance of several SAT solvers on industrial SAT formulas, especially on satisfiable instances.Peer ReviewedPostprint (published version
    • …
    corecore