24 research outputs found

    Validation and quality assurance applied to goat milk chemical composition: minerals and trace elements measurements

    Get PDF
    In the present study, quality assurance programmes were implemented to validate and control the analytical methodologies used for the characterization of minerals and trace elements in goat milk from Portuguese breeds. With the exception of chloride that was determined by potentiometric titration, all the other elements were determined by spectroscopic techniques after different sample decomposition: P was measured by ultraviolet-visible molecular absorption spectrometry, Ca, Fe, K, Mg, Mn, Na and Zn by flame atomic absorption spectrometry and Cd, Co, Cr, Cu, Mo, Ni and Pb by electrothermal atomic absorption spectrometry. The methods performance characteristics, namely specificity, limit of detection, limit of quantification, working range, precision and trueness were evaluated. Measurement uncertainty was expressed in terms of precision and trueness. Precision under intralaboratory reproducibility conditions was estimated from triplicate analysis, and the trueness component was estimated in terms of overall recovery using either skim milk powder certified reference materials or spiked samples. The results obtained are discussed on the basis of the performance criteria required by EC regulations to verify when a method is suitable for food control. The methods used for the characterization of minerals and trace elements in goat milk complied with EC requirements since there was no matrix influence, the Horrat values were < 2.0, recoveries were within the interval 1.00 卤 0.10 for minerals and 1.00 卤 0.20 for trace elements and the combined uncertainty of the results were lower than the maximum standard uncertainty calculated using the uncertainty function approach. In relation to the limits of detection and quantification, the limits obtained for Pb were lower than those specified by EC regulation

    Imidazole processing of wheat straw and eucalyptus residues: comparison of pre-treatment conditions and their influence on enzymatic hydrolysis

    Get PDF
    ABSTRACT: Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 degrees C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.info:eu-repo/semantics/publishedVersio

    An integrated olive stone biorefinery based on a two-step fractionation strategy

    Get PDF
    ABSTRACT: Olive stones (OS) constitute a waste lignocellulosic material produced by the olive oil industry in great amounts, that currently is only used as a low-value energy source for industrial or domestic boilers. Having in view its full valorization, this work proposes and validates an integrated strategy aiming to obtain three different streams of sugars / lignin-derived compounds. Dilute acid hydrolysis was used to obtain a xylose-rich hydroysate that was chemically converted into furfural with a 48.7 % yield. The resulting acid-pretreated solid biomass that consisted mainly of lignin and cellulose, was subjected to a catalyzed ethanol-based organosolv delignification. Temperature, time, and sulphuric acid concentration were optimized in order to recover added-value lignin products and digestible cellulose. At the optimal conditions (190 degrees C and 30 min), a 50 % delignification was reached, together with the highest enzymatic hydrolysis yields (190 g glucose/kg of OS). Phenolic compounds content in organosolv liquors reached 41.6 mg GAE/g OS. This extract presented an antioxidant capacity up to 10.9 mg TE/g OS. The pretreated solid fraction was used as a substrate for ethanol production by a pre-saccharification and simultaneous saccharification and fermentation process, enabling to obtain an ethanol concentration of 47 g/L, with a fermentation yield of 61.4 % of the theoretical maximum. Globally, from 100 kg of OS processed according to this experimental scheme, 6.9 kg of furfural, 6.2 kg of ethanol, 7.4 kg of lignin, and 4.2 kg of phenolics compounds can be obtained as main products, thus constituting a way of valorization of renewable material in a multiproduct biorefinery strategy.info:eu-repo/semantics/publishedVersio

    Effective Mild Ethanol-Based Organosolv Pre-Treatment for the Selective Valorization of Polysaccharides and Lignin from Agricultural and Forestry Residues

    Get PDF
    ABSTRACT: Organosolv pre-treatments aiming to selectively remove and depolymerise lignin and hemicellulose and yield an easily digestible cellulose fraction are one of the potential options for industrial implementation within the biorefinery concept. However, the use of high temperatures and/or high catalyst concentrations is still hindering its wide adoption. In this work, mild temperature organosolv processes (140 degrees C) that were either non-catalysed or catalysed with sulphuric or acetic acid were compared to standard similar conditions using ethanol-based organosolv for both wheat straw (WS) and eucalyptus wood residues (ERs) as agricultural and forestry-derived model raw materials, respectively. The experimental results demonstrated that high cellulose purities could be obtained for the catalysed ethanol-based processing of the WS, which resulted in high saccharification yields (>80%), conversely to the non-catalysed process, which only reached values close to 70%. For eucalyptus residues (ERs), the pulp yields obtained were lower than the values obtained for the WS, suggesting that the ERs were a more reactive material. Cellulose purity was higher than that obtained for the corresponding treatment for the WS, with the highest cellulose purity being obtained for the ethanol-based process catalysed with sulphuric acid. Both materials presented high lignin yield recovery in the liquid stream.info:eu-repo/semantics/publishedVersio

    Production of Oligosaccharides from Pine Nut Shells by Autohydrolysis

    Get PDF
    ABSTRACT: Pinus pinea nuts are commercial relevant Mediterranean edible forest nuts, with an increasing production and market value, whose industrial processing yields a lignocellulosic by-product, the pine nut shells, currently only used for combustion. Little research has been done on pine nut shells that could support a value-added application for this residue. This work studies for the first time the production of oligosaccharides by autohydrosis, and aims at an integrated upgrade within the biorefinery framework. Autohydrolysis was explored in the temperature range between 150 and 230 degrees C (corresponding to severity factors 2.13-4.63). Oligosaccharides, mainly xylo-oligosaccharides (95% of the total), were the key soluble products, reaching 28.7 g/100 g of xylan of the feedstock at the optimal conditions (log R-0 4.01). Other products were monosaccharides and phenolic compounds that reached 7.8 and 4.7 g/L, respectively, under the most severe conditions. The stability of the oligosaccharides at different temperatures (room, 37 degrees C and 100 degrees C) and pH (between 1 and 11) grant them significant market potential in the food and pharma sectors. The pre-treated pine nut shells by autohydrolysis presented an improved, although low, enzymatic digestibility (14%), and an improved high-heating value, therefore advising their further valorization by thermochemical pathways.info:eu-repo/semantics/publishedVersio

    Recovery of bioactive compounds from industrial exhausted olive pomace through ultrasound-assisted extraction

    Get PDF
    ABSTRACT: Simple Summary Exhausted olive pomace (EOP) is the main residue of the pomace oil extraction industry, which is generated in large quantities and has limited applications. Thus, this study aimed to obtain bioactive compounds from EOP using ultrasound-assisted extraction as a potential first valorization step. Two types of devices were tested: bath- and probe-type UAE. The operational parameters were studied and optimized to maximize the antioxidant compounds. In particular, hydroxytyrosol was the main phenolic compound identified and its content was 5.16 mg/g EOP (bath-type UAE) and 4.96 mg/g EOP (probe-type UAE). Mannitol was also detected in the extract, 59.53 mg/g EOP (bath-type UAE) and 69.73 mg/g EOP (probe-type UAE). The results highlight the great potential EOP has as a source of bioactive compounds, with applicability in several sectors. Moreover, the probe-type UAE shows potential to be applied for obtaining these bioactive compounds in a continuous and faster manner. Exhausted olive pomace (EOP) is the main agro-industrial waste of the olive pomace extracting industries. It contains phenolic compounds and mannitol, so the extraction of these bioactive compounds should be considered as a first valorization step, especially if EOP is used as biofuel. Therefore, EOP was subjected to bath-type ultrasound-assisted extraction (UAE), and the effects of the acetone concentration (20-80%, v/v), solid load (2-15%, w/v), and extraction time (10-60 min) on the extraction of antioxidant compounds were evaluated according to a Box-Behnken experimental design. By means of the response surface methodology, the optimum conditions were obtained: 40% acetone, 8.6% solids, and 43 min. For all the extracts, the total phenolic content (TPC), flavonoid content (TFC), and antioxidant activity (DPPH, ABTS, and FRAP) were determined. With the aim of shortening the extraction time, a two-level factorial experiment design was also carried out using a probe-type UAE, keeping the solid load at 8.6% (w/v) and the acetone concentration at 40% (v/v), while the amplitude (30-70%) and the extraction time (2-12 min) were varied to maximize the aforementioned parameters. Finally, a maximum of phenolic compounds was reached (45.41 mg GAE/g EOP) at 12 min and 70% amplitude. It was comparable to that value obtained in the ultrasonic bath (42.05 mg GAE/g EOP), but, remarkably, the extraction time was shortened, which translates into lower costs at industrial scale. Moreover, the bioactive compound hydroxytyrosol was found to be the major phenolic compound in the extract, i.e., 5.16 mg/g EOP (bath-type UAE) and 4.96 mg/g EOP (probe-type UAE). Other minor phenolic compounds could be detected by capillary zone electrophoresis and liquid-chromatography-mass spectrometry. The sugar alcohol mannitol, another bioactive compound, was also found in the extract, and its content was determined. Thus, the use of this technology can support the valorization of this waste to obtain bioactive compounds, including mannitol, hydroxytyrosol, and other derivatives, before being applied for other uses.info:eu-repo/semantics/publishedVersio

    Distillery residues from Cistus ladanifer (Rockrose) as feedstock for the production of added-value phenolic compounds and hemicellulosic oligosaccharides

    Get PDF
    ABSTRACT: Cistus ladanifer residues obtained after essential oil distillation were extracted with ethanol and water (CLRext) and subsequently hydrothermally treated (autohydrolysis) in order to selectively hydrolyze hemicelluloses. The extraction removed a significant amount of potentially valuable compounds (40% w/w, dry basis), foremost, phenolic compounds (0.363 and 0.250 g gallic acid equivalent/g extract, respectively, for water and ethanol). Autohydrolysis was studied under diverse severity factors (log R-o), in the temperature range of 150 to 230 degrees C. The hydrolyzates mainly contain oligosaccharides, reaching the highest concentration (23.5g/L) for log R-o of 3.07 (190 degrees C), corresponding to a yield of 15g oligosaccharides/100g dry feedstock. The processed solids are enriched in glucan and lignin. The maximum glucan content (35%) was attained at log R-o of 3.51 (205 degrees C). Py-GC/MS confirmed the reduction of pentose-derived carbohydrates in the solid after hydrothermal treatment and an increase of syringil units in the lignin compared to the untreated biomass. These results show the potential use of this C. ladanifer residue for the production of phenolic extracts, and hemicellulosic oligosaccharides, together with the production of a cellulose- and lignin-rich solid stream.info:eu-repo/semantics/publishedVersio

    Nanofiltration and reverse osmosis as a platform for production of natural botanic extracts: the case study of carob by-products聽

    Get PDF
    Carob kibbles are a low-cost and renewable source of economically relevant phenolic compounds (high value catechin and its derivatives and gallic acid) and abundant in small sugars. This work aims at producing two distinct natural extracts from carob kibbles, one extract enriched in catechin and its derivatives for the nutraceuticals market and an extract enriched in sugars for the food industry. This valorisation strategy involves an integrated process based on membrane technology that fulfils the zero discharge principle and may be applied to other agro-industrial by-products. Different aqueous extraction schemes were considered (a one-step process and a two-steps approach). The aqueous extracts obtained were fractionated by diananofiltration and the fractions obtained were evaluated in terms of their content in target products. An integrated scheme for production of fractionated extracts is proposed based on the experimental work developed assuring, simultaneously, a minimal use of resources and emission of waste
    corecore