3 research outputs found

    Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies

    Get PDF
    The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6) 10−3 and (5.1 ± 0.4) 10−3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7) 10−3 min−1] and exposed solution [(40.1 ± 1.7) 10−3 min−1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5) 10−3 and (26.6 ± 2.6) 10−3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines

    The influence of water and temperature on the growth of fungi causing spoilage of stored products.

    No full text
    A quantitative phase analysis was made of LixCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700°C). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the Li xCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The results showed the coexistence of both structures in LixCoO 2 obtained at low temperature (400 and 500°C), although only the layered structure was detected at higher temperatures (600 and 700°C), regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of Li xCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. © 2003 Elsevier B.V. All rights reserved
    corecore