39 research outputs found

    Theoretical Studies on the Mechanism of Iridium-Catalyzed Alkene Hydrogenation by the Cationic Complex [IrH<sub>2</sub>(NCMe)<sub>3</sub>(P<sup><i>i</i></sup>Pr<sub>3</sub>)]<sup>+</sup>

    No full text
    A mechanistic DFT study has been carried out on the ethene hydrogenation catalyzed by the [IrH<sub>2</sub>Ā­(NCMe)<sub>3</sub>Ā­(P<sup><i>i</i></sup>Pr<sub>3</sub>)]<sup>+</sup> complex (<b>1</b>). First, the reaction of (<b>1</b>) with ethene has been theoretically characterized, and three mechanistic proposals (<b>A</b>ā€“<b>C</b>) have been made for an identification of the preferred pathways for the alkene hydrogenation catalytic cycle considering IrĀ­(I)/IrĀ­(III) and IrĀ­(III)/IrĀ­(V) intermediate species. Theoretical calculations reveal that the reaction path with the lowest energy starts at an initial ethene migratory insertion into the metalā€“hydride bond, followed by dihydrogen coordination into the vacancy. Ethane is formed via Ļƒ-bond metathesis between the bound H<sub>2</sub> and the Ir-ethyl moiety, being the rate-determining step, in agreement with the experimental data available. The calculated energetic span associated with the catalytic cycle is 21.4 kcal mol<sup>ā€“1</sup>. Although no IrĀ­(V) intermediate has been found along the reaction path, the IrĀ­(V) nature of the transition state for the proposed key Ļƒ-bond metathesis step has been determined by electron localization function and geometrical analysis

    Intramolecular Cā€“H Oxidative Addition to Iridium(I) in Complexes Containing a <i>N</i>,<i>N</i>ā€²ā€‘Diphosphanosilanediamine Ligand

    No full text
    The iridiumĀ­(I) complexes of formula IrĀ­(cod)Ā­(SiNP)<sup>+</sup> (<b>1</b><sup><b>+</b></sup>) and IrClĀ­(cod)Ā­(SiNP) (<b>2</b>) are easily obtained from the reaction of SiMe<sub>2</sub>{NĀ­(4-C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>)Ā­PPh<sub>2</sub>}<sub>2</sub> (SiNP) with [IrĀ­(cod)Ā­(CH<sub>3</sub>CN)<sub>2</sub>]<sup>+</sup> or [IrClĀ­(cod)]<sub>2</sub>, respectively. The carbonylation of [<b>1</b>]Ā­[PF<sub>6</sub>] affords the cationic pentacoordinated complex [IrĀ­(CO)Ā­(cod)Ā­(SiNP)]<sup>+</sup> (<b>3</b><sup>+</sup>), while the treatment <b>2</b> with CO gives the cation <b>3</b><sup>+</sup> as an intermediate, finally affording an equilibrium mixture of IrClĀ­(CO)Ā­(SiNP) (<b>4</b>) and the hydride derivative of formula IrHClĀ­(CO)Ā­(SiNPā€“H) (<b>5</b>) resulting from the intramolecular oxidative addition of the Cā€“H bond of the SiCH<sub>3</sub> moiety to the iridiumĀ­(I) center. Furthermore, the prolonged exposure of [<b>3</b>]Ā­Cl or <b>2</b> to CO resulted in the formation of the iridiumĀ­(I) pentacoordinated complex IrĀ­(SiNPā€“H)Ā­(CO)<sub>2</sub> (<b>6</b>). The unprecedented Īŗ<sup>3</sup><i>C</i>,<i>P</i>,<i>P</i>ā€² coordination mode of the [SiNPā€“H] ligand observed in <b>5</b> and <b>6</b> has been fully characterized in solution by NMR spectroscopy. In addition, the single-crystal X-ray structure of <b>6</b> is reported

    BrĆønsted Acid/Base Driven Chemistry with Rhodathiaboranes: A Labile {SB<sub>9</sub>H<sub>9</sub>}ā€“Thiadecaborane Fragment System

    No full text
    Reversible H<sub>2</sub> cleavage promoted by closo to nido transformations of [1,1-(PPh<sub>3</sub>)<sub>2</sub>-3-(NC<sub>5</sub>H<sub>5</sub>)-<i>closo</i>-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>2</b>)/[8,8,8-(PPh<sub>3</sub>)<sub>2</sub>(H)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>1</b>) is a cooperative action with application in catalysis; the treatment of <b>2</b> and [1,1-(PPh<sub>3</sub>)(CO)-3-(NC<sub>5</sub>H<sub>5</sub>)-<i>closo</i>-RhSB<sub>9</sub>H<sub>8</sub>] (<b>3</b>) with either HCl or HOTf in CH<sub>2</sub>Cl<sub>2</sub> affords the 11-vertex <i>nido</i>-rhodathiaboranes [8,8-(PPh<sub>3</sub>)(Cl)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>4</b>) and [8,8,8-(PPh<sub>3</sub>)(CO)(Cl)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>5</b>), respectively. In contrast, the reaction of <b>1</b> with triflic acid yields the salt [8,8-(PPh<sub>3</sub>)<sub>2</sub>(H)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-RhSB<sub>9</sub>H<sub>10</sub>][OTf] (<b>6</b>). These results illustrate the bifunctional nature of the clusters and their nido to closo redox flexibility, which open new routes for the tuning of the reactivity of these polyhedral compounds and widen their potential applications

    Hydridorhodathiaboranes: Synthesis, Characterization, and Reactivity

    No full text
    The reaction between pyridine and [8,8-(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>1</b>) has given the opportunity to synthesize a new family of 11-vertex hydridorhodathiaboranes that feature boron-bound N-heterocyclic ligands. To explore the scope of this reaction, <b>1</b> has been treated with the methylpyridine isomers (picolines) 2-Me-NC<sub>5</sub>H<sub>4</sub>, 3-Me-NC<sub>5</sub>H<sub>4</sub>, and 4-Me-NC<sub>5</sub>H<sub>4</sub>, affording the picoline ligated clusters [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-9-(L)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where L = 2-Me-NC<sub>5</sub>H<sub>4</sub> (<b>3</b>), 3-Me-NC<sub>5</sub>H<sub>4</sub> (<b>4</b>), 4-Me-NC<sub>5</sub>H<sub>4</sub> (<b>5</b>). Thermal treatment of these <i>nido</i> clusters leads to dehydrogenation and the formation of <i>isonido</i>/<i>closo-</i>[1,1-(PPh<sub>3</sub>)<sub>2</sub>-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>9</b>ā€“<b>11</b>). Compounds <b>3</b>ā€“<b>5</b> react with ethylene to form [1,1-(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)Ā­(PPh<sub>3</sub>)-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>13</b>ā€“<b>15</b>). Similarly, treatment of <b>3</b>ā€“<b>5</b> with carbon monoxide produces [1,1-(CO)Ā­(PPh<sub>3</sub>)-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>17</b>ā€“<b>19</b>). These series of Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub> and CO ligated 11-vertex <i>isonido</i>/<i>closo</i>-rhodathiaboranes result from the substitution of one PPh<sub>3</sub> ligand by ethylene or CO together with H<sub>2</sub> loss and a concomitant <i>nido</i> to <i>closo</i>/<i>isonido</i> cluster structural transformation. The reactivity of <b>3</b>ā€“<b>5</b> with propene, 1-hexene, and cyclohexene under a hydrogen atmosphere is also reported and compared with the reactivity of the pyridine ligated analogue [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>2</b>). Low-temperature NMR studies have allowed the characterization of intermediates which undergo inter- and intramolecular exchange processes, depending on the nature of the N-heterocyclic ligand. The CO ligand enhances the nonrigidity of the cluster, opening mechanisms of H<sub>2</sub> loss

    Hydridorhodathiaboranes: Synthesis, Characterization, and Reactivity

    No full text
    The reaction between pyridine and [8,8-(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>1</b>) has given the opportunity to synthesize a new family of 11-vertex hydridorhodathiaboranes that feature boron-bound N-heterocyclic ligands. To explore the scope of this reaction, <b>1</b> has been treated with the methylpyridine isomers (picolines) 2-Me-NC<sub>5</sub>H<sub>4</sub>, 3-Me-NC<sub>5</sub>H<sub>4</sub>, and 4-Me-NC<sub>5</sub>H<sub>4</sub>, affording the picoline ligated clusters [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-9-(L)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where L = 2-Me-NC<sub>5</sub>H<sub>4</sub> (<b>3</b>), 3-Me-NC<sub>5</sub>H<sub>4</sub> (<b>4</b>), 4-Me-NC<sub>5</sub>H<sub>4</sub> (<b>5</b>). Thermal treatment of these <i>nido</i> clusters leads to dehydrogenation and the formation of <i>isonido</i>/<i>closo-</i>[1,1-(PPh<sub>3</sub>)<sub>2</sub>-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>9</b>ā€“<b>11</b>). Compounds <b>3</b>ā€“<b>5</b> react with ethylene to form [1,1-(Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)Ā­(PPh<sub>3</sub>)-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>13</b>ā€“<b>15</b>). Similarly, treatment of <b>3</b>ā€“<b>5</b> with carbon monoxide produces [1,1-(CO)Ā­(PPh<sub>3</sub>)-3-(L)-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>17</b>ā€“<b>19</b>). These series of Ī·<sup>2</sup>-C<sub>2</sub>H<sub>4</sub> and CO ligated 11-vertex <i>isonido</i>/<i>closo</i>-rhodathiaboranes result from the substitution of one PPh<sub>3</sub> ligand by ethylene or CO together with H<sub>2</sub> loss and a concomitant <i>nido</i> to <i>closo</i>/<i>isonido</i> cluster structural transformation. The reactivity of <b>3</b>ā€“<b>5</b> with propene, 1-hexene, and cyclohexene under a hydrogen atmosphere is also reported and compared with the reactivity of the pyridine ligated analogue [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>2</b>). Low-temperature NMR studies have allowed the characterization of intermediates which undergo inter- and intramolecular exchange processes, depending on the nature of the N-heterocyclic ligand. The CO ligand enhances the nonrigidity of the cluster, opening mechanisms of H<sub>2</sub> loss

    BrĆønsted Acid/Base Driven Chemistry with Rhodathiaboranes: A Labile {SB<sub>9</sub>H<sub>9</sub>}ā€“Thiadecaborane Fragment System

    No full text
    Reversible H<sub>2</sub> cleavage promoted by closo to nido transformations of [1,1-(PPh<sub>3</sub>)<sub>2</sub>-3-(NC<sub>5</sub>H<sub>5</sub>)-<i>closo</i>-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>2</b>)/[8,8,8-(PPh<sub>3</sub>)<sub>2</sub>(H)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>1</b>) is a cooperative action with application in catalysis; the treatment of <b>2</b> and [1,1-(PPh<sub>3</sub>)(CO)-3-(NC<sub>5</sub>H<sub>5</sub>)-<i>closo</i>-RhSB<sub>9</sub>H<sub>8</sub>] (<b>3</b>) with either HCl or HOTf in CH<sub>2</sub>Cl<sub>2</sub> affords the 11-vertex <i>nido</i>-rhodathiaboranes [8,8-(PPh<sub>3</sub>)(Cl)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>4</b>) and [8,8,8-(PPh<sub>3</sub>)(CO)(Cl)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>5</b>), respectively. In contrast, the reaction of <b>1</b> with triflic acid yields the salt [8,8-(PPh<sub>3</sub>)<sub>2</sub>(H)-9-(NC<sub>5</sub>H<sub>5</sub>)-<i>nido</i>-RhSB<sub>9</sub>H<sub>10</sub>][OTf] (<b>6</b>). These results illustrate the bifunctional nature of the clusters and their nido to closo redox flexibility, which open new routes for the tuning of the reactivity of these polyhedral compounds and widen their potential applications

    Reactions of 11-Vertex Rhodathiaboranes with HCl: Synthesis and Reactivity of New Cl-Ligated Clusters

    No full text
    Reactions of [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>1</b>), [1,1-(PPh<sub>3</sub>)<sub>2</sub>-3-(Py)-<i>closo</i>-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>2</b>), and [1,1-(CO)Ā­(PPh<sub>3</sub>)-3-(Py)-<i>closo</i>-1,2-RhSB<sub>9</sub>H<sub>8</sub>] (<b>4</b>), where Py = Pyridine, with HCl to give the Cl-ligated clusters, [8,8-(Cl)Ā­(PPh<sub>3</sub>)-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>3</b>) and [8,8,8-(Cl)Ā­(CO)Ā­(PPh<sub>3</sub>)-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>8</sub>] (<b>5</b>), have recently demonstrated the remarkable <i>nido</i>-to-<i>closo</i> redox flexibility and bifunctional character of this class of 11-vertex rhodathiaboranes. To get a sense of the scope of this chemistry, we report here the reactions of PR<sub>3</sub>-ligated analogues, [8,8,8-(H)Ā­(PR<sub>3</sub>)<sub>2</sub>-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where PR<sub>3</sub> = PMePh<sub>2</sub> (<b>6</b>), or PPh<sub>3</sub> and PMe<sub>3</sub> (<b>7</b>); and [1,1-(PR<sub>3</sub>)<sub>2</sub>-3-(Py)-<i>closo</i>-1,2-RhSB<sub>9</sub>H<sub>8</sub>], where PR<sub>3</sub> = PPh<sub>3</sub> and PMe<sub>3</sub> (<b>8</b>), PMe<sub>3</sub> (<b>9</b>) or PMe<sub>2</sub>Ph (<b>10</b>), with HCl to give Cl-ligated clusters. The results demonstrate that in contrast to the PPh<sub>3</sub>-ligated compounds, <b>1</b>, <b>2</b>, and <b>3</b>, the reactions with <b>6</b>ā€“<b>10</b> are less selective, giving rise to the formation of mixtures that contain monophosphine species, [8,8-(Cl)Ā­(PR<sub>3</sub>)-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where PR<sub>3</sub> = PMe<sub>3</sub> (<b>11</b>), PMe<sub>2</sub>Ph (<b>12</b>), or PMePh<sub>2</sub> (<b>15</b>), and bis-ligated derivatives, [8,8,8-(Cl)Ā­(PR<sub>3</sub>)<sub>2</sub>-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where PR<sub>3</sub> = PMe<sub>3</sub> (<b>13</b>) or PMe<sub>2</sub>Ph (<b>14</b>). The {RhClĀ­(PR<sub>3</sub>)}-containing compounds, <b>3</b>, <b>11</b>, <b>12</b>, and <b>15</b>, are formally unsaturated 12 skeletal electron pair (sep) clusters with <i>nido</i>-structures. Density functional theory (DFT) calculations demonstrate that the <i>nido</i>-structure is more stable than the predicted <i>closo</i>-isomers. In addition, studies have been carried out that involve the reactivity of <b>3</b> with Lewis bases. Thus, it is reported that <b>3</b> interacts with MeCN in solution, and it reacts with CO and pyridine to give the corresponding Rh-L adducts, [8,8,8-(Cl)Ā­(L)Ā­(PPh<sub>3</sub>)-9-(Py)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>], where L = CO (<b>5</b>) or Py (<b>20</b>). On the other hand, the treatment of <b>3</b> and <b>5</b> with Proton Sponge (PS) promotes the abstraction of HCl, as [PSH]Ā­Cl, from the <i>nido</i>-clusters, and the regeneration of the parent <i>closo</i>-species, completing two new stoichiometric cycles that are driven by BrĆønsted acid/base chemistry

    Metalā€“Nitroalkene and <i>aci</i>-Nitro Intermediates in Catalytic Enantioselective Friedelā€“Crafts Reactions of Indoles with <i>trans</i>-Ī²-Nitrostyrenes

    No full text
    The half-sandwich aqua complex (<i>S</i><sub>Rh</sub>,<i>R</i><sub>C</sub>)-[(Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)Ā­RhĀ­{(<i>R</i>)-Prophos}Ā­(H<sub>2</sub>O)]Ā­[SbF<sub>6</sub>]<sub>2</sub> (Prophos = propane-1,2-diylbisĀ­(diphenylphosphane)) efficiently catalyzes the asymmetric reaction between <i>N</i>-methyl-2-methylindole and <i>trans</i>-Ī²-nitrostyrenes (up to 94% ee). The metalā€“nitroalkene complex involved has been characterized by X-ray crystallography, and the <i>aci</i>-nitro intermediate complex has been spectroscopically detected. A plausible catalytic cycle is proposed

    Enantioselective Catalytic Dielsā€“Alder Reactions with Enones As Dienophiles

    No full text
    The aqua complexes (<i>S</i><sub>M</sub>,<i>R</i><sub>C</sub>)-[(Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)Ā­MĀ­(PROPHOS)Ā­(H<sub>2</sub>O)]Ā­[SbF<sub>6</sub>]<sub>2</sub> [PROPHOS = (<i>R</i>)-propane-1,2-diylbisĀ­(diphenylphosphane); M = Rh (<b>1</b>), Ir (<b>2</b>)] are active catalysts for the asymmetric Dielsā€“Alder reaction between ketones and dienes. At low temperatures, enantioselectivities of up to 89% ee are achieved. The intermediate Lewis acidā€“dienophile complexes (<i>S</i><sub>M</sub>,<i>R</i><sub>C</sub>)-[(Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)Ā­MĀ­(PROPHOS)Ā­(MVK)]Ā­[SbF<sub>6</sub>]<sub>2</sub> (MVK = methyl vinyl ketone; M = Rh (<b>3</b>), Ir (<b>4</b>)) and (<i>S</i><sub>Ir</sub>,<i>R</i><sub>C</sub>)-[(Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)Ā­IrĀ­(PROPHOS)Ā­(EVK)]Ā­[SbF<sub>6</sub>]<sub>2</sub> (EVK = ethyl vinyl ketone (<b>5</b>)) have been isolated and characterized by analytical and spectroscopic means, including the determination of the crystal structure of the iridium complexes <b>4</b> and <b>5</b> by X-ray diffractometric methods. Structural parameters indicate that the dispositions of the coordinated dienophiles are controlled by the CH/Ļ€ attractive interactions established between a phenyl group of the PROPHOS ligand and the Ī±-vinyl proton of the ketones. Proton NMR parameters indicate that these interactions are maintained in solution. From these data, the stereoselectivity of the catalytic reaction is discussed

    NH<sub>3</sub>ā€‘Promoted Ligand Lability in Eleven-Vertex Rhodathiaboranes

    No full text
    The reaction of the 11-vertex rhodathiaborane, [8,8-(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>1</b>), with NH<sub>3</sub> affords inmediately the adduct, [8,8,8-(NH<sub>3</sub>)Ā­(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>4</b>). The NH<sub>3</sub>ā€“Rh interaction induces the labilization of the PPh<sub>3</sub> ligands leading to the dissociation product, [8,8-(NH<sub>3</sub>)Ā­(PPh<sub>3</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>5</b>), which can then react with another molecule of NH<sub>3</sub> to give [8,8,8-(NH<sub>3</sub>)<sub>2</sub>(PPh<sub>3</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>6</b>). These clusters have been characterized in situ by multielement NMR spectroscopy at different temeperatures. The variable temperature behavior of the system demonstrates that the intermediates <b>4</b>ā€“<b>6</b> are in equilibrium, involving ligand exchange processes. On the basis of low intensity signals present in the <sup>1</sup>H NMR spectra of the reaction mixture, some species are tentatively proposed to be the <i>bis</i>- and <i>tris</i>-NH<sub>3</sub> ligated clusters, [8,8-(NH<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>7</b>) and [8,8,8-(NH<sub>3</sub>)<sub>3</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>8</b>). After evaporation of the solvent and the excess of NH<sub>3</sub>, the system containing species <b>4</b>ā€“<b>8</b> regenerates the starting reactant, <b>1</b>, thus closing a stoichiometric cycle of ammonia addition and loss. After 40 h at room temperature, the reaction of <b>1</b> with NH<sub>3</sub> gives the hydridorhodathiaborane, [8,8,8-(H)Ā­(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>2</b>), as a single product. The reported rhodathiaboranes show reversible H<sub>3</sub>N-promoted ligand lability, which implies weak Rhā€“N interactions, leading to a rare case of metal complexes that circumvent ā€œclassicalā€ Werner chemistry
    corecore