NH<sub>3</sub>‑Promoted Ligand Lability in Eleven-Vertex Rhodathiaboranes

Abstract

The reaction of the 11-vertex rhodathiaborane, [8,8-(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>1</b>), with NH<sub>3</sub> affords inmediately the adduct, [8,8,8-(NH<sub>3</sub>)­(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>4</b>). The NH<sub>3</sub>–Rh interaction induces the labilization of the PPh<sub>3</sub> ligands leading to the dissociation product, [8,8-(NH<sub>3</sub>)­(PPh<sub>3</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>5</b>), which can then react with another molecule of NH<sub>3</sub> to give [8,8,8-(NH<sub>3</sub>)<sub>2</sub>(PPh<sub>3</sub>)-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>6</b>). These clusters have been characterized in situ by multielement NMR spectroscopy at different temeperatures. The variable temperature behavior of the system demonstrates that the intermediates <b>4</b>–<b>6</b> are in equilibrium, involving ligand exchange processes. On the basis of low intensity signals present in the <sup>1</sup>H NMR spectra of the reaction mixture, some species are tentatively proposed to be the <i>bis</i>- and <i>tris</i>-NH<sub>3</sub> ligated clusters, [8,8-(NH<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>7</b>) and [8,8,8-(NH<sub>3</sub>)<sub>3</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>10</sub>] (<b>8</b>). After evaporation of the solvent and the excess of NH<sub>3</sub>, the system containing species <b>4</b>–<b>8</b> regenerates the starting reactant, <b>1</b>, thus closing a stoichiometric cycle of ammonia addition and loss. After 40 h at room temperature, the reaction of <b>1</b> with NH<sub>3</sub> gives the hydridorhodathiaborane, [8,8,8-(H)­(PPh<sub>3</sub>)<sub>2</sub>-<i>nido</i>-8,7-RhSB<sub>9</sub>H<sub>9</sub>] (<b>2</b>), as a single product. The reported rhodathiaboranes show reversible H<sub>3</sub>N-promoted ligand lability, which implies weak Rh–N interactions, leading to a rare case of metal complexes that circumvent “classical” Werner chemistry

    Similar works

    Full text

    thumbnail-image

    Available Versions